Using marker-assisted backcrossing to transfer stripe rust resistance genes to Iranian wheat cultivars

Document Type : Original Article

Authors

1 MSc. student, Deparment of Plant Productin and Genetic.Shahid Bahonar University of Kerman, Kerman, iran

2 Ph.D. graduate, Deparment of Plant Productin and Genetic.Shahid Bahonar University of Kerman, Kerman, iran

3 Assistant Professor, Deparment of Plant Productin and Genetic.Shahid Bahonar University of Kerman, Kerman, iran

4 Associate Professor, Deparment of Plant Productin and Genetic.Shahid Bahonar University of Kerman, Kerman, iran

10.22034/plant.2024.141546.1111

Abstract

Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat in many parts of the world. The annual and indiscriminate use of fungicides not only increases pollution but can also lead to the resistance of pathogenic fungi to these chemicals. Therefore, creating genetic resistance is the best way to deal with this disease. Due to the challenges in quickly replacing susceptible wheat cultivars, breeding cultivars with suitable levels of genetic resistance is the most efficient method to control stripe rust as a long-term strategy. In this study, the Yr18 and Yr29 genes, which are among the most effective resistance genes in adult plants, were transferred to the Iranian cultivars Baharan, Rakhshan, Parsi, and Amin using the marker-assisted backcrossing method. For each cultivar, in four separate breeding projects, crosses were made with the donor parents Pavon/Lalbahadur and Opata85. The progeny of this generation (F1), containing 50% of the genetic material of their recurrent parent, were backcrossed with the Iranian cultivars (recurrent parent) to obtain BC1F1 progeny in each population. By genotyping 30 random plants in each project, the heterozygous genotypes carrying the resistance genes were identified using specific markers, and the second backcrossing was performed. In each population, a line resistant to yellow rust can be created by repeating several generations of backcrossing and one generation of selfing.

Keywords


Basnet, B.R, Singh, R.P., Ibrahim, A.M.H., Herrera -Foessel, S.A., Huerta –Espino, J., Lan, C., & Rudd, J.C. (2013). Characterization of Yr54 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3. Molecular Breeding, 33, 385 -399.
Bobrowska, R., Noweiska, A., Spychała, J., Tomkowiak, A., Nawracała, J.,& Kwiatek, M. (2022). Diagnostic accuracy of genetic markers for identification of the Lr46/Yr29 “slow rusting” locus in wheat (Triticum aestivum L.). Biomolecular Concepts13(1), 1-9.
Bonnett, D., Rebetzke, G., & Spielmeyer, W. (2005). Strategies for efficient implementation of molecular markers in wheat breeding. Mol Breeding, 15, 75–85
Chen, X.M. (2005). Epidemiology and control of stripe rust on wheat (Puccinia striiformis f. sp. Tritici) on wheat. Canadian Journal of Plant Pathology, 27, 314-337.
Datta, D., Nayar, S. K., Prashar, M., & Bhardwaj, S.C. (2008). Inheritance of temperature-sensitive leaf rust resistance and adult plant stripe rust resistance in common wheat cultivar PBW343. Euphytica, 166, 277–282.
Dyck, P.L. (1987). The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome,29, 467–469.
Frisch, M., Bohn, M., & Melchinger, A. E. (1999). Comparison of selection strategies for marker‐assisted backcrossing of a gene. Crop Science39(5), 1295-1301.
Gupta, P.K., Kumar, J., Mir, R.R.,& Kumar, A. (2010). 4 Marker-assisted selection as a component of conventional plant breeding. Plant breeding reviews33, 145.
Herrera-Foessel, S. A., Singh, R. P., Lillemo, M., Huerta-Espino, J., Bhavani, S., Singh, S., & Lagudah, E. S. (2014). Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theoretical and Applied Genetics, 127, 781– 789.
Hospital, F., &Charcosset, A. (1997). Marker-assisted introgression of quantitative trait loci. Genetics, 147:1469–1485.
Huerta-Espino, J., Singh, R., Crespo-Herrera, L.A., Villaseñor-Mir, H.E., Rodriguez-Garcia, M.F., Dreisigacker S., Barcenas-Santana, D., & Lagudah, E. (2020). Adult Plant Slow Rusting Genes Confer High Levels of Resistance to Rusts in Bread Wheat Cultivars from Mexico. Frontiers in Plant Science, 11:824.
Huerta-Espino, J., Singh, R.P., German, S., McCallum, B.D., Park, R.F.,& Chen, W.Q. (2011). Global status of wheat leaf rust caused by Puccinia triticina. Euphytica, 179, 143–160.
Koebner, R. M., & Summers, R.W. (2003). 21st century wheat breeding: plot selection or plate detection? TRENDS in Biotechnology21(2), 59-63.
Kolmer, J. A., Bernardo, A., Bai, G., Hayden, M. J., & Chao, S. (2018). Adult plant leaf rust resistance derived from Toropi wheat is conditioned by Lr78 and three minor QTL. Phytopathology108(2), 246-253.
Kolmer, J. A., Singh, R. P., Garvin, D. F., Viccars, L., William, H. M., Huerta‐Espino, J., & Lagudah, E.S. (2008). Analysis of the Lr34/Yr18 Rust Resistance Region in Wheat Germplasm. Crop science48, 1841–1852.
Krattinger, S. G., Lagudah, E. S., Spielmeyer, W., Singh, R. P., Huerta-Espino, J., McFadden, H., & Keller, B. (2009). A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science323(5919), 1360-1363.
Lagudah, E. S., McFadden, H., Singh, R. P., Huerta-Espino, J., Bariana, H. S., & Spielmeyer, W. (2006). Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theoretical and Applied Genetics, 114, 21-30.
Lagudah, E. S., Krattinger, S. G., Herrera -Foesse, S. A., Singh, R. P., Huerta -Espino, J., Spielmeyer, W., Brown -Guedira, G., Selter, L. L., & Keller, B. (2009). Gene -specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theoretical and Applied Genetics,119, 889 –898
Line, R.F. (2002). Stripe rust of wheat and barley in North America: a retrospective historical review. Annual Review of Phytopathology, 40, 75–118.
Lowe, I., Jankuloski, L., Chao, S., Chen, X., See, D., & Dubcovsky, J. (2011). Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theoretical and applied genetics, 123, 143– 157.
Martinez, F., Niks, R. E., Singh, R. P., & Rubiales, D. (2001). Characterization of Lr46, a gene conferring partial resistance to wheat leaf rust. Hereditas135(2‐3), 111-114.
McIntosh, R. A., Wellings, C. R., & Park, R. F. (1995). Wheat rusts: an atlas of resistance genes. CSIRO publishing.Australia, pp. 200.
Morgounov, A., Tufan, H. A., Sharma, R., Akin, B., Bagci, A., Braun, H. J., & McIntosh, R.  (2012). Global incidence of wheat rusts and powdery mildew during 1969–2010 and durability of resistance of winter wheat variety Bezostaya 1. European journal of plant pathology132, 323-340.
Msundi, E. A., Owuoche, J. O., & Oyoo, M. E. (2021). Identification of bread wheat genotypes with superior grain yield and agronomic traits through evaluation under rust epiphytotic conditions in Kenya. Scientific Reports, 11, 21415.
Naseri, B., & Jalilian, F. (2021).Charactrization of leaf rust progress in wheat cultivars with different resistance levels and sowing dates. European Journal of Plant Pathology, 159, 665-672.
Omar, G. E., Mazrou, Y. S., El-Kazzaz, M. K., Ghoniem, K. E., Ashmawy, M. A., Emeran, A. A., & Nehela, Y. (2021). Durability of Adult Plant Resistance Gene Yr18 in Partial Resistance Behavior of Wheat (Triticum aestivum) Genotypes with Different Degrees of Tolerance to Stripe Rust Disease, Caused by Puccinia striiformis f. sp. tritici: A Five-Year Study. Plants10(11), 2262.
Rutkoski, J. E., Krause, M. R., & Sorrells, M. E. (2022). Breeding methods: population improvement and selection methods. in wheat improvement: Food Security in a Changing Climate, pp. 83-96. Cham: Springer International Publishing.
Santra, D., DeMacon, V. K., Garland-Campbell, K., & Kidwell, K. (2006). Marker assisted backcross breeding for simultaneous introgression of stripe rust resistance genes yr5 and yr15 into spring wheat (Triticum aestivum L.). In Proceedings of the International Meeting of ASA-CSSA-SSSA, Salt Lake City, UT, pp. 74-75.
Singh, R. P., Herrera-Foessel, S. A., Huerta-Espino, J., Lan, C. X., Basnet, B. R., Bhavani, S., & Lagudah, E. S. (2013). Pleiotropic gene Lr46/Yr29/Pm39/Ltn2 confers slow rusting, adult plant resistance to wheat stem rust fungus. In Proceedings Borlaug Global Rust Initiative, 2013 Technical Workshop, Vol. 17.
Singh, R. P., Herrera-Foessel, S. A., Huerta-Espino, J., Bariana, H., Bansal, U., McCallum, B., & Lagudah, E. S. (2012). Lr34/Yr18/Sr57/Pm38/Bdv1/Ltn1 confers slow rusting, adult plant resistance to Puccinia graminis tritici. In 13th Cereal Rust and Powdery Mildew Conference p. 173. Beijing: China Agricultural Science and Technology Press.
Singh, R. P., Huerta-Espino, J., Bhavani, S., Herrera-Foessel, S. A., Singh, D., Singh, P. K., & Crossa, J.  (2011). Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica, 179, 175–186.
Skowrońska, R., Tomkowiak, A., Nawracała, J., & Kwiatek, M. T. (2020). Molecular identification of slow rusting resistance Lr46/Yr29 gene locus in selected (Triticale × Triticosecale Wittmack) cultivars. Journal of Applied Genetics61(3), 359-366.
Wellings, C. R., Boyd, L. A., & Chen, X. M. (2012). Resistance to stripe rust in wheat: pathogen biology driving resistance breeding. In Disease resistance in wheat pp. 63-83. Wallingford UK: CABI.
Wellings, C.R. (2011). Global status of stripe rust: a review of historical and current threats. Euphytica179(1), 129-141.
William, M., Singh, R. P., Huerta-Espino, J., Islas, S. O., & Hoisington, D. (2003). Molecular Marker Mapping of Leaf Rust Resistance Gene Lr46 and Its Association with Stripe Rust Resistance Gene Yr29 in Wheat. Phytopathology, 93(2), 153-159.
Zhang, P., McIntosh, R. A., Hoxha, S., & Dong, C. (2009). Wheat stripe rust resistance genes Yr5 and Yr7 are allelic. Theoretical and applied genetics120, 25-29.
Zhang, Y.P., Uyemoto, J., & Kirkpatrick, B. (1998). A small-scale procedure for extracting nucleic acids from woody plants infected with various phytopathogens for PCR assay. JVirol Methods,71, 45–50.