ارزیابی تفاوت ها و شباهت های ژنتیکی جمعیت ها و ژنوتیپ های بنگ دانه بر اساس نشانگرهای رتروترانسپوزونیIRAP و REMAP

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی، گروه کشاورزی، دانشگاه پیام نور، مشگین شهر، اردبیل، ایران

2 دانشیار، گروه به نژادی و بیوتکنولوژی گیاهی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

3 استاد، گروه به نژادی و بیوتکنولوژی گیاهی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

10.34785/J020.2022.012

چکیده

بنگ­ دانه به دلیل آلکالوئیدهای هیوسیامین و اسکوپولامین از ارزش دارویی بالایی برخوردار است. تنوع ژنتیکی این گیاه با استفاده از نشانگرهای مختلف ارزیابی شده است. ولی تاکنون از کاربرد نشانگرهای رتروترانسپوزونی در بررسی تنوع ژنتیکی و بهبود کیفیت و کمیت آلکالوئیدهای این گیاه گزارشی ثبت نشده است. لذا در این پژوهش تنوع ژنتیکی10 جمعیت بنگ ­دانه با استفاده از نشانگرهای مولکولی IRAP  و REMAP  بررسی شد. برای نشانگرهای IRAP از 36 ترکیب ممکن حاصل از هشت آغازگرLTR، هفت ترکیب ، تکثیر مناسب و قابل امتیازدهی داشتند. در تکنیکREMAP  از ترکیب 11 آغازگر  ISSRبا هشت آغازگر   LTR استفاده شد که از 88 ترکیب ممکن، 12 ترکیب قابل امتیازدهی بودند. متوسط میزان اطلاعات چندشکلی برای نشانگرهای IRAP وREMAP  به ­ترتیب 30/0 و 32/0 و میانگین شاخص نشانگر برای این دو نشانگر برابر 59/2 و 47/2 برآورد شد. بر اساس این معیارها، نشانگر REMAP به علت نقش بارزتر ریزماهواره­ ها در برآورد تنوع ژنتیکی بنگ­دانه کاراتر از IRAP بود. در تجزیه واریانس مولکولی با استفاده از نشانگر­های IRAP و REMAP تنوع درون­ جمعیتی بیشتر از بین­ جمعیتی برآورد شد که این امر می­ تواند ناشی از وجود تفاوت­های ژنتیکی زیاد در افراد درون جمعیت از لحاظ مکان­های ژنی تکثیر یافته باشد و مویدی بر ناهمگنی درون جمعیت و تنوع مطلوب این جمعیت­ها در شمال­ غرب ایران باشد. تجزیه خوشه‌ای بر اساس نشانگر IRAP موفق به تفکیک گونه‌ها از یکدیگر نبود ولی نشانگر REMAP توانست گونه‌های H.pusillus و H.reticulatus را تا حد بالایی از هم تفکیک کند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of genetic differences and similarities of henbane populations and genotypes based on IRAP and REMAP retrotransposition markers

نویسندگان [English]

  • Alireza Asghari Mirak 1
  • Seyed Siamak Alavi Kia 2
  • Seyed Abolghasem Mohammadi 3
1 Lecturer, Department of Agriculture, Payame Noor University, Meshginshahr, Ardabil, Iran
2 Associate Professor, Department of Plant Biotechnology and Breeding, Faculty of Agriculture, University of Tabriz,,Tabriz, Iran
3 Professor, Department of Plant Biotechnology and Breeding, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
چکیده [English]

Henbane has high medicinal value due to hyoscyamine and scopolamine alkaloids. The genetic diversity of this plant has been evaluated using different markers. However, so far, there has been no report on the use of retrotransposon markers in studying genetic diversity and improving the quality and quantity of alkaloids of this plant. In this study, the genetic diversity of 10 henbane populations was investigated using IRAP and REMAP molecular markers. Among 36 possible combinations of 8 LTR primers, 7 combinations had appropriate and scalable amplification. In the REMAP technique, 11 ISSR primers were combined with 8 LTR primers, and of the 88 possible combinations, 12 combinations were scalable. The mean values of polymorphic information for IRAP and REMAP markers were 0.30 and 0.32, respectively, and the mean marker index for these two markers was 2.59 and 2.47, respectively. Taking into account these criteria, REMAP marker was more efficient than IRAP due to the more considerable role of microsatellites in the estimation of henbane genetic diversity. In the analysis of molecular variance using IRAP and REMAP markers, intra-population variation was estimated to be higher than inter-population. This finding can be due to the existence of many genetic differences in the individuals in the population in terms of amplified gene locations. It also indicates the heterogeneity within the population and the desirable diversity of these populations in northwest Iran. Cluster analysis based on IRAP marker failed to separate species, but REMAP marker could separate H. pusillus and H. reticulatus species to a high degree.
 

کلیدواژه‌ها [English]

  • Henbane
  • genetic diversity
  • IRAP marker
  • REMAP marker
Abou-Isba, S.M., Abdel-Ghani, A.H. and Al-Qura’n, S. 2007. Variation in Hyoscyamus spp. populations from Jordan using morphological traits and RAPD markers. Jordan Journal of Agricultural Sciences, 3(4): 411-428.
Alavi-Kia, S.S., Mohammadi, S.A, Aharizad, S. and Moghaddam, M. 2008. Analysis of genetic diversity and phylogenetic relationships in Crocus genus of Iran using inter-retrotransposon amplified polymorphic. Biotecnology and Biotecnology Equipment, 22(3): 795-800.
Begna, T. 2021. Combining ability and heterosis in plant improvement. Open Journal of Plant Science, 6(1): 108-117.
Branco, C.J.S., Vieira, E.A., Malone, G., Kopp, M.M., Malone, E., Bernardes, A., Mistura, C.C., Carvalho, F.I.F. and Oliveira, C.A. 2007. IRAP and REMAP assessments of genetic similarity in rice. Applied Genetics, 48(2): 107-113.
Chadha, S. and Gopalakrishna, T. 2007. Comparative assessment of REMAP and ISSR marker assays for genetic polymorphism studies in Magnaporthe grisea. Current Science, 96: 688-692.
Chahota, R.K. and Sharma, S.K. 1993. Studies on genetic variability and component analysis in macrosperma and microsperma lentils. Indian Journal of Genetics and Plant Breeding, 53(04): 411-417.
Demirel, U., Tındaş, İ., Yavuz, C., Baloch, F.S. and Çalışkan, M.E. 2018. Assessing genetic diversity of potato genotypes using inter-PBS retrotransposon marker system. Plant Genetic Resources, 16(2): 137-145.
Docking, T.R., Saade, F.E., Elliott, M.C. and Schoen, D.J. 2006. Retrotransposon sequence variation in four asexual plant species. molecular evolution, 62(4): 375-387.
Excoffier, L., Smouse, P.E. and Quattro, J. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131(2): 479-491.
Fazli, P. and HaghMyrza, K. 2012. Study of genetic diversity in native chickpea mass with markers ISSR. Modern Genetics, 6: 97-104. (In Persian).
Gill, R.A., Scossa, F., King, G.J., Golicz, A.A., Tong, C., Snowdon, R.J., Fernie, A.R. and Liu, S. 2021. On the role of transposable elements in the regulation of gene expression and subgenomic interactions in crop genomes. Critical Reviews in Plant Sciences, 40(2): 157-189.
Gorji, A.M., Poczai, P., Polgar, Z. and Taller, J. 2011. Efficiency of arbitrarily amplified dominant markers (SCoT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. American journal of potato research, 88(3): 226-237.
Grandbastien, M.A., Spielmann, A. and Caboche, M. 1989. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature, 337(6205): 376-380.
Guo, D., Zhang, H. and Luo, Z. 2006. Genetic relationships of Diospyros kaki Thunb. and related species revealed by IRAP and REMAP analysis. Plant Science, 170(3): 528-533.
Hasni Tesseh, S.F., Samizadeh Lahiji, H. and Shuai Dilmi, M. 2015. Investigating genetic diversity between and within tobacco types using ISSR markers, Modern Genetics, 9(1): 1-12. (In Persian).
Hasni Tesseh, S.F., Samizadeh Lahiji, H. and Shua'i Dilmi, M. 2014. Evaluation of genetic diversity between and within different types of tobacco using IRAP and REMAP markers, Crop Breeding, 7(16): 1-9. (In Persian).
      Huff, D.R., Peakall, R. and Smouse, P.E. 1993. RAPD variation within and among natural populations of outcrossing buffalograss [Buchloe dactyloides (Nutt.) Engelm.]. Theoretical and applied genetics, 86(8): 927-934.         
Jahantigh Haghighi, Z., Fahmideh, L. and Fazlinsab, B. 2020. Evaluation of genetic diversity of different tomato cultivars using RAPD and ISSR markers. Agricultural Biotechnology, 10.22084/ab.2019.17227.1386. (In Persian).
Kalendar, R., and Schulman, A. 2006. IRAP and REMAP for retrotransposon based genotyping and fingerprinting. Nature Protocols, 1: 2478-2484.
Kalendar, R. and Schulman, A.H. 2006. IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature protocols, 1(5): 2478-2484.
Kalendar, R., Grob, T., Regina, M., Suoniemi, A. and Schulman, A. 1999. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theoretical and Applied Genetics, 98(5): 704-711.
Kharestani, H., Nasrolah Nejad Gomi, A. and Mehrabi, A.A. 2013. The evaluation of genetic diversity of Einkorn wheats using microsatellite markers. Crop Production, 6(2): 1-16. (In Persian).
Khatamsaz, M., and Zangirian, E. 1998. SEM survey of pollen morphology in Iranian species of Hyoscyamus L. (Solanaceae). The Iranian Journal of Botany, 7: 151-163. (In Persian).
Khatamsaz, M. and Zangirian, E. 1998. SEM survey of pollen morphology in Iranian species of Hyoscyamus L.(Solanaceae). Botany, 7(2): 151-163. (In Persian).
Khosromehr, F., Jafari, A. and Hamdi, M. 2012. A comparative study of the stem anatomy of two Henbane species in Razavi Khorasan. the first national conference of biological sciences, Islamic Azad University, Flowerjan branch. Esfahan. (In Persian).
Kouhsari, S.M., Sharifi, G.O.L.A.N.D.A.M., Ebrahimzadeh, H. and Khatamsaz, M. 2006. Comparative study of six isoenzyme systems in some species of Hyoscyamus L., from Iran. Pakistan journal of Botany, 38(1): 107-119.
Kumar, A. and Hirochika, H. 2001. Applications of retrotransposons as genetic tools in plant biology. Trends in Plant Science, 6(3): 127-134.
Lightbourn, G.J., Jelesko, J.G. and Veilleux, R.E. 2007. Retrotransposon-based markers from potato monoploids used in somatic hybridization. Genome, 50(5): 492-501.
Mahfouze, S.A. and Ottai, M.E. 2011. Assessment of genetic variability for some Hyoscymus species using biochemical and molecular markers. Applied Sciences Research, 7(12): 1752-1759.
Manetti, M.E., Rossi, M., Costa, A.P., Clausen, A.M. and Van Sluys, M.A. 2007. Radiation of the Tnt1 retrotransposon superfamily in three Solanaceae genera. BMC Evolutionary Biology, 7(1): 1-12.
Mirzadeh Vaghefi, S.S. 2013. Comparison the seed morphology of several species of Hyoscyamus. Plant Research, 26(4): 537-545. (In Persian).
Moghaddam, M., Ehdaie, B. and Waines, J.G. 2000. Genetic diversity in populations of wild diploid wheat Triticum urartu Tum. ex. Gandil. revealed by isozyme markers. Genetic Resources and Crop Evolution, 47(3): 323-334.
Muhammad, A.J. and Othman, F.Y. 2005. Characterization of Fusarium wilt-resistant and Fusarium wilt-susceptible somaclones of banana cultivar Rastali (Musa AAB) by random amplified polymorphic DNA and retrotransposon markers. Plant Molecular Biology Reporter, 23(3): 241-249.
Mohsenzadeh Golfazaei, M., Samizadeh Lahiji, H., Alami, A., Shua'i Dilmi, M. and Talesh Sasani, S. 2012. Investigating the genetic diversity of different greenhouse tobacco genotypes using ISSR and retrotransposon markers. Plant Sciences, 43(2): 371-380. (In Persian).
Moon, H.S., Nifong, J.M., Nicholson, J.S., Heineman, A., Lion, K., Van der Hoeven, R., Hayes, A.J. and Lewis, R.S. 2009. Microsatellite‐based analysis of tobacco (Nicotiana tabacum L.) genetic resources. Crop Science, 49(6): 2149-2159.
Naghavi, M.R., Ramshini, H.A., Fazeli, N.B. and Mardi, M. 2004. Comparative analyses of the genetic diversity among bread wheat genotypes based on RAPD and SSR markers. Biotechnology, 2: 195-202. (In Persian).
Nejadhabib Vash, F., Rahman, F., Heydari, R. and Jamei, R. 2012. Investigating the genetic diversity of Henbane genotypes using ISSR molecular markers, 12th Iranian Genetics Congress, Tehran, Iranian Genetics Association. (In Persian).
Niu, Y.X. and Zhao, F.K. 2010. Clustering Analysis and Identification of Genetic Diversities in Eggplant (Solanum melongena L.) Varieties with REMAP. In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (pp. 1-5). IEEE.
Peakall, R.O.D. and Smouse, P.E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular ecology notes, 6(1): 288-295.
Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. and Rafalski, A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular breeding, 2(3): 225-238.
Porebski, S., Bailey, L.G. and Baum, B.R. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 15(1): 8-15.
Ren, N. and Timko, M.P. 2001. AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome, 44(4): 559-571.
Rogers, S.A. and Pauls, K.P. 2000. Ty1-copia-like retrotransposons of tomato (Lycopersicon esculentum Mill.). Genome, 43(5): 887-894.
Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A. and Allard, R. 1984. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences, 81(24): 8014-8018.
Sakhdari, A., Malekzadeh Shafarodi, S., Asghari, A. and Kayani Fariz, M. 2013. Analysis of the relationship between some agricultural traits with ISSR markers in 20 potato genotypes, 8th National Biotechnology Conference of the Islamic Republic of Iran and 4th National Biosafety Conference, University of Tehran, Iran. (In Persian).
Sengupta, T., Vinayagam, J., Nagashayana, N., Gowda, B., Jaisankar, P. and Mohanakumar, K.P. 2011. Antiparkinsonian effects of aqueous methanolic extract of Hyoscyamus niger seeds result from its monoamine oxidase inhibitory and hydroxyl radical scavenging potency. Neurochemical Research, 36(1): 177-186.
Sharifi, G.S., Kouhsari, M, Ebrahimzadeh, H and Khatamsaz, M. 2006. Isozyme analysis of seedling samples in some species of Hyoscyamus from Iran. Pakistan journal of Botany, 9:1685-1692.
Sheydaei, M., Mosalanezhad, M. and Khatamsaz, M. 2000. Numerical taxonomy and seed protein analysis of Hyoscyamus species in Iran. Journal of Sciences Islamic Republic of Iran, 11: 83-92. (In Persian).
Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular biology and evolution, 24(8): 1596-1599.
Yousefi, M.J., Hassani, M.E., Jouzani, G.S., Arefi, H.M. and Mohammadipour, M. 2009. Genetic Variation of Some Iranian Black Henbane Accessions (Hyoscyamus niger L.) using RAPD and SDS-PAGE of Seed Proteins. Plant Breeding, 3(2): 92-98.
Zhu, J., Gale, M. D, Quarrie, S, Jackson, M. T, and Bryan, G. J. 1998. AFLP markers for the study of rice biodiversity. Theoretical and Applied Genetics, 96: 602-611.
Zhu, J., Gale, M.D., Quarrie, S., Jackson, M.T. and Bryan, G.J. 1998. AFLP markers for the study of rice biodiversity. Theoretical and Applied Genetics, 96(5): 602-611.