ارزیابی چندساله مقاومت به زنگ قهوه‌ای در 192 ژنوتیپ گندم نان تحت شرایط مزرعه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه اصلاح نباتات و بیوتکنولوژی،دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 استاد، گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 استادیار، گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

4 استاد، گروه بانک ژن، مؤسسه تحقیقات ژنتیک گیاهی و گیاهان زراعی لایبنیز (IPK)، آلمان

5 دانشیار، گروه علوم زراعی و اصلاح نباتات، دانشگاه ابوریحان، دانشگاه تهران، پاکدشت، ایران

چکیده

عامل بیماری زنگ قهوه‌ای گندم قارچی با نام Puccinia recondita f. sp. tritici می‌باشد. این پژوهش طی سال‌های 1398 الی 1400 به مدت سه سال به‌منظور بررسی مقاومت جامعه‌ای متشکل از 192 ژنوتیپ گندم نان بهاره انجام شد. بر اساس صفت سطح منحنی پیشرفت بیماری (AUDPC) در سال اول، ژنوتیپ‌ها به چهار گروه مقاوم، نیمه‎مقاوم، نیمه‌حساس و حساس، در سال دوم، به سه گروه مقاوم، نیمه‎مقاوم و نیمه‌حساس و در سال سوم به پنج گروه مقاوم، نیمه‎مقاوم، حساس، نیمه‌حساس و خیلی ‌حساس تقسیم شدند. کشت ها در هر سال در قالب طرح بلوک‏های کامل تصادفی با دو تکرار انجام شد. میانگین صفت AUDPC برای ژنوتیپ‌های مورد مطالعه در سه سال مورد پژوهش به‌ترتیب 04/154، 08/107 و 66/296 درصد در روز محاسبه شد. هم‌چنین براساس نتایج حاصل از تجزیه واریانس در سه سال مورد آزمایش ژنوتیپ‌ها از لحاظ صفات مورد بررسی اختلاف معنی‌داری در سطح احتمال یک درصد داشتند. بیش‌ترین ضریب همبستگی مثبت بالای معنی‌دار به‎ترتیب بین شدت آلودگی و AUDPC (r=0.960-0.981)، شدت آلودگی و تیپ آلودگی (r=0.833-0.855) و تیپ آلودگی و AUDPC (r=0.829-0.864) مشاهده شد. بررسی تنوع ژنتیکی مقاومت به بیماری زنگ قهوه‌ای با محاسبه AUDPC و تخمین سطح مقاومت در این جمعیت متنوع گندم نان بهاره وجود اختلاف معنی‌داری برای این صفت را نشان داد که حاکی از با ارزش بودن این مواد ژنتیکی برای برنامه‌های به‌نژادی گندم نان است.

کلیدواژه‌ها


عنوان مقاله [English]

Multi-year evaluation of brown rust resistance in 192 bread wheat genotypes under field conditions

نویسندگان [English]

  • Hamid Ramroudi 1
  • Mohammad Hadi Pahlavani 2
  • Khalil Zaynali Nezhad 3
  • Andreas Boerner 4
  • Mohsen Ibrahimi 5
1 1. Ph.D. student, Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Professor, Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Assistant Professor, Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
4 Professor, Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Leibniz, Germany
5 Associate Professor, Department of Agronomy and Plant Breeding Sciences, College of Aburaihan, University of Tehran, Pakdasht,, Iran
چکیده [English]

wheat brown rust is caused by Puccinia recondita f. sp. tritici. This research was conducted in three years from 2019 to 2021 to investigate the resistance of 192 spring bread wheat cultivars to brown rust. Based on the area under the disease progress curve (AUDPC) criteria, in the first year, the genotypes were grouped into resistant, moderately resistant, moderately susceptible and susceptible; in the second year, they grouped into resistant, moderately resistant, and moderately susceptible, and in the third year into five groups of resistant, moderately resistant, susceptible, moderately susceptible, and highly susceptible. A complete randomized block design with two replicates was used in each year. Mean AUDPC trait for the studied cultivars in the three years was 154.04, 107.08, and 296.66% per day, respectively. Furthermore, the results of the analysis of variance in the three years showed that the genotypes are significantly different in their evaluated traits at 0.01 significant level. The highest significant positive correlation coefficient was observed between percentage severity and AUDPC (r=0.960-0.981), percentage severity and infection type (r=0.833-0.855), and infection type and AUDPC (r=0.864-0.829). Investigating the genetic diversity of resistance to brown rust disease using AUDPC and estimating the level of resistance in this population of spring bread wheat genotypes showed significant diversity among the genotypes that can be emploied in bread wheat breeding programs.

کلیدواژه‌ها [English]

  • "Percentage severity"
  • "Correlation coefficient"
  • "Seedling resistance"
  • "Adult plant resistance"
Ali Mohammadzadeh, S., Nasrollahnezhad Ghomi, A.S., Zaynali Nezhad, K., Ramezanpour, S.S., & Dehghan, M.A. (2020). Correlation analysis of some SSR markers with brown rust resistance indices in some bread wheat cultivars. Journal of Crop Breeding, 12(35), 177-188. (In Persian).
Bahar, A., Munir, I., Iqbal, A., Ahmad, M.A., Maqsood, I., & Hafeez, M. (2018). Molecular charactarization of wheat advanced lines for leaf rust resistant genes using SSR markers. Microbial Pathogenesis, 123, 348-352.
Chen, X. (2013). Review Article: High-temperature Adult-Plant Resistance, Key for sustainable control of stripe rust. American Journal of Plant Sciences, 4, 608–627.
Dadrezaei, S.T., Afshari, F., & Patpour, M. (2015). Evaluation of phenotypic resistance to rusts in some iranian wheat genotypes in greenhouse and field conditions. Behnjadi Magazine of Seedling and Seeds, 31(1), 531-546. (In Persian).
Dadrezaei, S.T., Dehghan, M.A., Safavi, S.A., Dalvand, M., & Shahbazi. K. (2021). Resistance evaluation of advanced and commercial genotypes of iranian wheat to leaf rust at seedling and adult plant stages. Journal of Applied Research in Plant Protection, 11 (4), 1–13. (In Persian) .
Dadrezaei, S.T., Nazari, K., Afshari, F., & Mohammadi Goltapeh, E. (2013). Phenotypic and molecular characterization of wheat leaf rust resistance gene Lr34 in iranian wheat cultivars and advanced Lines. American Journal of Plant Sciences, 4, 1821-1833.
Dadrezaei, S.T., Tabatabai, S.N., Lakzadeh, I., Jafarnezhad, A., Afshari F., & Hassanbayat. Z. (2018). Evaluation of tolerance to leaf rust disease in some selected bread wheat genotypes. Entomology and Phytopathology, 86(1), 29-40. (In Persian) .
Delfan, S., Bihamta, M.R., Dadrezaei, S.T., & Alipoor, H. (2021). Identification sources of resistance for leaf rust (Puccinia triticina Erikss.) in iranian wheat genotypes. Iranian Journal of Plant Protection, 51(2), 115-133. (In Persian).
Fahmi, A.I., El-Shehawi, A.M., & El-Orabey, W.M. (2015). Leaf rust resistance and molecular identification of Lr34 gene in egyptian wheat. Journal of Microbial and Biochemical Technology, 7(6), 338-343.
Feuillet, C., & Keller, B. (1999). High gene density is conserved at syntenic loci of small and large grass genomes. Institute of Plant Biology, 96, 8265-8270.
Hei, N.B. (2017). Evaluation of wheat cultivars for slow rusting resistance to leaf rust (Puccinia trticina Eriks) in ethiopia. African Journal of Plant Science, 11(2), 23-29.
Huerta-Espino, J., Singh, R., Crespo-Herrera, L.A., Villasenor-Mir, H.E., Rodriguez-Garcia, M.F., Dreisigacker, S., Barcenas-Santana, D., & Lagudah, E. (2020). Adult plant slow rusting genes confer high levels of resistance to rusts in bread wheat cultivars from mexico. Frontiers in Plant Science, 11(824), 1-15.
Huseynova, I.M., Guliyeva, F.B., Rustamova, S.M., & Aliyev, J.A. (2013). PCR-based molecular markers linked to the leaf rust resistance gene Lr19 in different bread wheat cultivars. Advances in Biological Chemistry, 3, 153-158.
Jeger. M.J., & Viljanen-Rollinson. S.L.H. (2001). The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theoretical and Applied Genetics, 102, 32-40.
Jin, Y., Szabo L.J., & Carson, M. (2010). Century-old mystery of Puccinia striiformis life history solved with the identification of berberis as an alternate host. Phytopathology, 100, 432–435.
Krattinger, S.G., Lagudah, E.S., Spielmeyer, W., Singh, R.P., Huerta-Espino, J., & McFadden, H. (2009). A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 323, 1360-1363.
Lingzhi, S.H.I., Zaifeng, L.I.,Wang, X., Kang, Z., Zhu, L., Ren, Z., Li, X., & Liu, D. (2016). Genetic analysis and molecular mapping of a leaf rust resistance gene in the wheat line 19HRWSN-129. Czech Journal of Genetics and Plant Breeding, 52(1), 1-5.
Mcneal, F.H., Konzak, C.F., Smith, E.P., Tate, W.S., & Russell, T.S. (1971). A uniform system for recording and processing cereal research data. Agricultural Research Service Bulletin, 42 pp.
Peterson, R.F., Camphell, A.B., & Hannah, A.E. (1948). A diagramatic scale for estimating rust intensity of leaves and stem of cereals. Canadian Journal of Research, 26, 496-500.
Qureshi, N., Bariana, H., Venu Kumran, V., Muruga, S., Forrest, K.L., Hayden, M.J., & Bansal, U. (2018). A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582. Theoretical and Applied Genetics. 131, 1091-1098.
Safavi, S.A., & Malihipour, A. (2020). Partial resistance of some wheat cultivars and candidate lines against stem rust (Puccinia graminis f. sp. tritici). Plant Protection (Scientific Journal of Agriculture), 43(1), 31-53 (In Persian).
Safavi, S.A., Ahari, A.B., Afshari, F., & Arzanlou, M. (2013). Slow rusting resistance in iranian barley cultivars to Puccinia striiformis f. sp. hordei. Journal of Plant Protection Research, 53(1), 5-11.
Singh, R.P., Hodson, D.P., Jin, Y., Lagudah, E.S., Ayliffe, M.A., Bhavani, S., Rouse, M.N., Pretorius, Z.A., Szabo, L.J., Huerta-Espino, J., Basnet, B.R., Lan, C., & Hovmoller, M.S. (2015). Emergence and spread of new races of wheat stem rust fungus: Continued threat to food security and prospects of genetic control. Phytopathology, 105, 872–84.
Singla, J., Linda Luthi, L., Wicker, T., Bansal, U., Krattinger, S.G., & Keller, B. (2016). Characterization of Lr75: a partial, broad-spectrum leaf rust resistance gene in wheat. Theoretical and Applied Genetics. 30, 1-12. Tsilo, T.J., Jin, Y., & Anderson, J.A. (2010). Identification of flanking markers for the stem rust resistance gene Sr6 in wheat. Crop Science Society, 50, 1967-1970.
Wilcoxson, R.D., Atif, A.H., & Skowvmand, B. (1974). Slow rusting of wheat varieties in the field correlated with stem rust severity on detached leaves in the greenhouse. Plant Disease, 58, 1058-1088.
Wu, J., Wang, Q., Liu, S., Huang, S., Mu, J., Zeng, Q., Huang, L., Han, D., & Kang, Z. (2017). Saturation mapping of a major effect QTL for stripe rust resistance on wheat chromosome 2B in cultivar napo 63 using SNP genotyping arrays. Journal Frontiers in Plant Science, 8(653), 1-13.
Zangh, P., Li, x., Gebrewahid, T.W., Liu, H., Xia, X., He, Z., Li, Z., & Liu, D. (2019). QTL mapping of adult-plant resistance to leaf and stripe rust in wheat cross SW 8588/thatcher using the wheat 55/K SNP array. Plant Disease, 103, 3041-3049.