واکاوی برهمکنش ژنوتیپ و محیط در جو با استفاده از روش GGE بای‌پلات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه مهندسی تولید و ژنتبک گیاهی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه، ایران

2 دانشیار، گروه مهندسی تولید و ژنتبک گیاهی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه، ایران

3 استادیار، گروه مهندسی تولید و ژنتبک گیاهی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه، ایران

10.22034/plant.2024.141045.1090

چکیده

در دهه‌های اخیر، استفاده از روش تصویری یا نمودار دوجهی ژنوتیپ بعلاوه برهمکنش ژنوتیپ و محیط (روش GGE بای‌پلات) در بررسی برهمکنش ژنوتیپ و محیط در برنامه‌های به نژادی متداول شده است. در این روش اثر ژنوتیپ و اثر متقابل ژنوتیپ × محیط از هم تفکیک نشده و گزینش ارقام پایدار بر اساس هر دو اثر مذکور صورت می‌گیرد. هدف این پژوهش، واکاوی برهمکنش ژنوتیپ و محیط برای عملکرد 21 ژنوتیپ جو با استفاده از روشGGE بای‌پلات بود. بدین‌منظور آزمایش‌هایی در قالب طرح بلوک‌های کامل تصادفی با دو تکرار طی سال‌های 94-1393، 95-1394، 96-1395 در دو شرایط آبی و دیم (مجموعاً شش محیط) اجرا گردید. نتایج حاصل از تجزیه واریانس مرکب برای عملکرد دانه، اختلاف معنی‌داری را در سطح احتمال یک درصد برای اثرات سال، ژنوتیپ، ژنوتیپ × سال، سال × مکان و سال × مکان × ژنوتیپ نشان داد. نتایج تجزیه پایداری ژنوتیپ‌ها با روش GGE بای‌پلات نشان داد که دو مؤلفه اول و دوم GGE بای‌پلات، 6/72 درصد از تغییرات کل عملکرد دانه را توجیه کردند. بررسی چند ضلعی بای پلات منجر به شناسایی سه ژنوتیپ برتر و سه ابر محیط شده و ژنوتیپ‌های مناسب در هر ابرمحیط نیز مشخص گردید. بررسی همزمان پایداری و عملکرد ژنوتیپ‌ها با استفاده از بای‌پلات مختصات محیط متوسط، نشان داد که ژنوتیپ 19 با بیشترین عملکرد دانه ناپایدارترین ژنوتیپ بود و ژنوتیپ‌های 9و 1 با عملکرد بالا و پایداری عملکرد نسبی گزینش شدند. محیط آبی سال 1393، به علت نزدیکی به محیط متوسط، به‌عنوان متمایز کننده‌ترین و نماینده‌ترین محیط شناسایی شد.

کلیدواژه‌ها


عنوان مقاله [English]

GGE Biplot analysis of genotype × environment interaction in barley genotypes

نویسندگان [English]

  • Parvaneh Latifi 1
  • Abdollah Najaphy 2
  • Leila Zarei 3
1 MSc. graduate, Department of Plant production and Genetics, Faculty of Agricultural Sciences and Engineering, Razi University, Kermanshah, Iran
2 Associate Professor, Department of Plant production and Genetics, Faculty of Agricultural Sciences and Engineering, Razi University, Kermanshah, Iran
3 Assistant Professor, Department of Plant production and Genetics, Faculty of Agricultural Sciences and Engineering, Razi University, Kermanshah, Iran
چکیده [English]

The interaction between the genotype and the environment creates complexity in yield prediction and is a challenge for breeding programs. The aim of this study was to investigate the genotype × environment interaction and study the grain yield stability of 21 barley genotypes using the GGE biplot model. The experiment was carried out in randomized complete block designs with two replications during 2014-2015, 2015-2016, 2016-2017 growing seasons under rain-fed and irrigation conditions (a total of six environments). The combined analysis of variance for grain yield showed a significant difference for year, genotype, genotype × year, year × location and year × location × genotype. The results of stability analysis by GGE biplot showed that the two first components of GGE biplot explained 72.6% of total grain yield variation. The polygon view of GGE biplot showed three superior genotypes and suitable genotypes in each mega-environment. Based on the biplot patterns, the genotypes 19 was the most unstable accession, whereas genotypes 9 and 1 were identified as stable genotypes, which suggests the superiority of these genotypes compared to the other genotypes. The irrigation environment in 2014 was identified as the most distinctive and representative environment due to its proximity to the average environment.

کلیدواژه‌ها [English]

  • Graphical display
  • mega-environment
  • rain-fed conditions
  • yield stability
Abarnak, S., Zarei, L., & Cheghamirza, K. (2018). Evaluation of some important agronomic and physiological traits in barley cultivars in rainfed conditions. Crop Physiology Journal, 9 (36),63-41. (In Persian).
Aghaee-Sarbarzeh, M., Dastfal, M., Farzadi, H., Andarzian, S. B., ShahbazPourshchebazi, A.,Ali, M., Elsadek, A., &Salem, E. M. (2018). Stability parameters and AMMI analysis of quinoa (Chenopodium quinoa Willd.).‏ Egyption Journal of Agronomy, 40(1), 59-74.
Badooei Delfard, R., Mostafavi, K.,& Mohammadi, A. (2017). Genotype-environment interaction and yield stability of winter barley varieties (Hordeum vulgare L.). Journal of Crop Breeding8(20), 106-99.(In Persian)
Fekadu, W., Mekbib, F., Lakew, B., &Haussmann,B.I. (2023). Genotype×environment interaction and yield stability in barley (Hordeum vulgare L.) genotypes in the central highland of Ethiopia. Journal of Crop Science and Biotechnology. 26(2), 119-133.
Gabriel, K. R. (1971). The biplot graphic disply of matrices with application to principal component analysis. Biometrica, 58, 453-467.
Ghazvini, H., Bagherikia, S., Pour-Aboughadareh, A., Sharifalhossaini, M., Razavi, S.A., Mohammadi, S., GhasemiKalkhoran, M., Fathihafshejani, A.,& Khakizade, G. (2022). GGE biplot analysis of promising barley lines in the cold regions of Iran. Journal of Crop Improvement, 36(4), 461-472.
Jamshidi-Moqadam, M.,& Purdad, S.S. (2013). Evaluation of the stability of grain yield of spring safflower genotypes using non-parametric criteria and GGE method of bayflat in dryland conditions. Journal of Seed and Plant Seedlings. 29 (1), 45-63.(In Persian)
Hagos, H. G., and Abay, F. (2013). AMMI and GGE biplot analysis of bread wheat genotypes in the northern part of Ethiopia. Journal of Plant Breeding and Genetics1(1), 12-18.‏
Karami, E., Arshadi, A., Sartip, A., Zare, M., &Rezabakhsh, P. (2018). Genotypes performance in relation to drought tolerance in barley using multi-environment trials. Agronomy Research, 16(1), 5-21.
Kendal, E. 2016. GGE biplot analysis of multi-environment yield trials in barley (HordeumvulgareL.) cultivars. Ekin Journal of Crop Breeding and Genetics, 2(1), 90-99.‏
Khanzadeh, H., Vaezi, B., Mohammadi, R., Mehraban, A., Hosseinpor, T.,& Shahbazi, K. (2018). Grain yield stability of barley genotypes in uniform regional yield trails in warm and semi warm dry land area. Indian Journal of Agricultural Research, 52(1), 16-21.‏
Koocheki, A., Sorkhi, B.,& EslamzadehHesari, M.R., 2012. Study on stability of elite barley (Hordeumvulgare L.) genotypes for cold regions of Iran using AMMI method. Cereal Research. 2 (4), 261-249. (In Persian)
Meng, Y., Ren, P., Ma, X., Li, B., Bao, Q., Zhang, H., & Wang, H. )2016(. GGE biplot-based evaluation of yield performance of barley genotypes across different environments in China. Journal of Agricultural Science and Technology, 18(2), 533-543.‏
Mohammadi, R., Sadeghzadeh, D., Armion, M., & Ahmadi, M. )2011(. Analysis of stability and adaptability of grain yield in durum wheat geneotypes. Agronomy Journal (Pajouhesh and Sazandegi). 91, 70-87. (In Persian)
Mohamed, N.E. (2013). Genotype by environment interactions for grain yield in bread wheat (TriticumaestivumL.). Journal of Plant Breeding and Crop Science7(5), 150-157.‏
Mortazavian, S. M. M., Nikkhah, H. R., Hassani, F. A., Sharif-al-Hosseini, M., Taheri, M., and Mahlooji, M. 2014. GGE biplot and AMMI analysis of yield performance of barley genotypes across different environments in Iran. Journal of Agricultural Science and Technology, 16(3), 609-622.‏
Pour-Aboughadareh, A., Ghazvini, H., Jasemi, S.S., Mohammadi, S., Razavi, S.A., Chaichi, M., Ghasemi Kalkhoran, M., Monirifar, H., Tajali, H., Fathihafshjani, A. )2023(. Selection of high-yielding and stable genotypes of barley for the cold climate in Iran. Plants, 12(13), 2410.
Rezaei-Kolo, S., Khodarahmi, M. Mostafavi, K., 2012. Study of traits in different barley types using factor analysis under terminal drought stress and without stress conditions. Journal of Agronomy and Plant Breeding. 3(8), 149-160. (In Persian)
Romena, M.R., A. Najaphy, M. Saeedi, M. Khoramivafa. (2022).Genotype by environment interaction analysis for grain yield of wheat in irrigated and rain-fed mega-environments using AMMI and GGE bipolt models. Genetika,54 (3): 1447-1463.
Sabaghnia, N., Karimizadeh, R., & Mohammadi, M. )2013(. GGE biplot analysis of durum wheat (Triticum turgidum spp. durum) yield in multi-environment trials. Bulgarian Journal of Agricultural Science19(4), 756-765.‏
SadeghzadehAhari, D., Hosseini, S. K., Hosseinpoor, T., Jafarabai, J. A., Khalilzadeh, Gh.,Alizadeh-Dizaj, Kh. (2005). Study on adaptability and stability of grain yield in durum wheat lines in warm and semi-warm dryland areas. Journal of Seedlings and Seeds,21, 561-576. (In Persian)
Shiri, M, and Bahrampour, T., 2015. Genotype × environment interaction analysis using GGE biplot in grain maize (Zea mays L.) hybrids under different irrigation conditions. Journal of Cereals Research,5 (1), 83-94. (In Persian).
Singh, S., & Pawar, I.S. (2010). Theory and application of biometrical genetics. CBS Publishers and Distributors.‏
Solonechnyi, P., Vasko, N., Naumov, A., Solonechnaya, O., Vazhenina, O., Bondareva, O., and Logvinenko, Y. (2015). GGE biplot analysis of genotype by environment interaction of spring barley varieties. Zemdirbyste-Agriculture102(4), 431.‏
Taghizadeh, A., Sorkhilalehloo, B. Nakhjavan, S. (2016). Study on stability of winter barley (Hordeum vulgare L.) using multivariate statistical methods. Journal of Crop Breeding,8, 17-87. (In Persian)
Tsige, T., Shiferaw, T., Gezahegn, S., &Taye, K. (2020). Assessment of malt barley genotypes for grain yield and malting quality traits in the central highlands of Ethiopia. Assessment, 10(20).doi: 10.7176/JBAH/10-20-01.
Taherian M., Nikkhah, H. R., Aghnoum, R., Sharifi Alhoseini, M., Mahlooji, M., Taheri Mazandarani, M., Tabataei, S. A. and Hasani, F. 2022. Graphical analysis of grain yield stability for selection of suprior barley (Hordeum vulgare L.) promising lines in temperate regions of Iran. Iranian Journal of Crop Science, 24 (1), 78-64. (In Persian)
Vaezi, B., Maleki, H. H., Ahmadi, A., Mehraban, A., Mohammadi, R., Sabzi, Z., Sabaghnia, N. 2020. Interpretation of genotype× environment interaction for grain yield of barley using GGE biplot method. Journal of Plant Physiology and Breeding, 10(2), 109-119.
Vargas, M., Crossa, G., Sayre, K., Reynolds, M., Ramireza, M.,& Talbot. (1998). Interpreting genotype environment and interaction in wheat by partial least squares resiatier. Crop Science, 38,67-689.
Yan, W. 2000. GGE biplot windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agronomy Journal93(5), 1111-1118.‏
Yan, W., Rajcan, I. (2002). Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Science, 42, 11–20.
Yan, W., & Kang, M.S. (2003). GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC press, Boca Raton, FL.‏
Yan, W., & Tinker, N.A. (2005). An integrated biplot analysis system for displaying, interpreting, and exploring genotype × environment interaction. Crop Science45(3), 1004-1016.‏
Yan, W., & Tinker, N.A. (2006). Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science86(3), 623-645.
Yan, W., Kang, M. S., Ma, B., Woods, S., & Cornelius, P. L. (2007). GGE biplotvs AMMI analysis of genotype-by-environment data. Crop Science47(2), 643-653.‏
Zali, H., Barati, A., Lakzadeh, I., Koohkan, S., Alt Jafarby, J., Hosseinpour, A., &Kheirgoo, M. (2022). Study of grain yield stability of barley promising lines in warm regions using GGE biplot. Journal of Agricultural Science and Sustainable Production,32(1), 65-78.