ارزیابی پایداری عملکرد دانه ژنوتیپ‌های امید بخش کینوا (Chenopodium quinoa Willd.) با استفاده از روش‌های گرافیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

2 استاد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

3 دانش آموخته دکتری، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

10.22034/plant.2024.141091.1092

چکیده

برهم­کنش ژنوتیپ × محیط عامل اصلی محدود کننده در شناسایی ژنوتیپ‌های برتر در برنامه‌های به­نژادی گیاهی است. این پژوهش با هدف بررسی برهم­کنش ژنوتیپ × محیط و گزینش ژنوتیپ­های پرمحصول و پایدار کینوا با استفاده از روش­های AMMI و GGE بای­پلات انجام شد. تعداد 30 ژنوتیپ مختلف کینوا تهیه شده از موسسه IPK آلمان با منشا متفاوت، به­عنوان مواد گیاهی این آزمایش در قالب طرح بلوک­های کامل تصادفی در دو محیط بوئین زهرا و تاکستان در طول دوسال  1401 و 1402 کشت شدند. نتایج نشان داد که واریانس ناشی از آثار ژنوتیپ، محیط و برهم­کنش ژنوتیپ × محیط برای عملکرد دانه معنی­دار بود و این صفت بیش­تر تحت‌تاثیر تنوع ژنوتیپی قرار گرفت. تغییرات برهم­کنش ژنوتیپ × محیط در روش AMMI توسط دو مولفه اصلی اول توجیه شد. با استفاده از این روش ژنوتیپ­های G14، G11، G12، G23، G1، G5 و G13 به­عنوان ژنوتیپ­های پرمحصول و پایدار شناخته شدند و همچنین محیط تاکستان در سال دوم به­عنوان محیط پایدار و پرمحصول معرفی شد. همچنین دو مولفه اصلی اول در روش GGE بای­پلات حدود 92 درصد از تغییرات ژنوتیپ و برهم­کنش ژنوتیپ × محیط را توجیه کردند. در این روش محیط­های مورد مطالعه در دو مگامحیط قرار گرفتند. همه محیط­ها توانایی تمایز بالایی در عملکرد دانه ژنوتیپ­های مورد مطالعه را دارا بودند و ژنوتیپ­های G11 و G14 به­عنوان ژنوتیپ­های ایده­ال شناسایی شدند. درنهایت براساس هردو روش AMMI و GGE بای­پلات ژنوتیپ‌های G5، G11، G12، G13، G14 و G23 در بین ژنوتیپ­های کینوا مورد مطالعه به­عنوان ژنوتیپ­های پرمحصول و پایدار شناسایی شدند و محیط بوئین زهرا به­عنوان محیط ایده آل معرفی شد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of grain yield stability of promising quinoa genotypes (Chenopodium quinoa Willd.) using graphical methods

نویسندگان [English]

  • Vahid Jokarfard 1
  • Babak Rabiei 2
  • Ebrahim Sourilaki 3
1 Ph. D. Student,, Department of Plant Production and Genetic Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
2 Professor, Department of Plant Production and Genetic Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
3 Ph.D, graduate, Department of Plant Production and Genetic Engineering, Faculty of Agricultural Sciences,University of Guilan, Rasht, Iran
چکیده [English]

Genotype × environment interaction is the main limiting factor in identifying superior genotypes in plant breeding programs. This research was conducted with the aim of investigating the genotype × environment interaction and selecting high-yielding and stable quinoa genotypes using AMMI (Additive Main effects and Multiplicative Interaction) and GGE (Genotype plus Genotype by Environment interaction) biplot methods. A number of 30 different quinoa genotypes prepared from the IPK Institute of Germany with different origins were cultivated as plant materials of this experiment in the form of randomized complete block design in two environments, Buin Zahra and Takestan, during the two crop years of 2022-2023. The results showed that the variance caused by the effects of genotype, environment and genotype × environment interaction was significant for grain yield and this trait was more affected by genotypic diversity. The variation of genotype × environment interaction in the AMMI method was explained by the Two principal components. Using this method, genotypes G14, G11, G12, G23, G1, G5 and G13 were recognized as high-yielding and stable genotypes, and the Takestan environment in the second year was introduced as a stable and high-yielding environment. Also, the first two main components in GGE biplot method explained about 92% of the variation of genotype and genotype × environment interaction for grain yield. In this method, the studied environments were placed in two mega-environments. All environments had high differentiation ability for grain yield in the studied genotypes. G11 and G14 genotypes were identified as ideal genotypes. Finally, based on both AMMI and GGE bi-plot methods, genotypes G5, G11, G12, G13, G14 and G23 among the quinoa genotypes studied were identified as high-yielding and stable genotypes, and Buin Zahra environment was introduced as an ideal environment.

کلیدواژه‌ها [English]

  • Genotype × environment interaction
  • adaptability
  • Mega-environment
  • AMMI
  • GGE biplot
Akbarpour, O., Dehghani, H., Sorkhi, B., & Gauch Jr, H.G. (2014). Evaluation of genotype× environment interaction in Barley (Hordeum Vulgare L.) based on AMMI model using developed SAS program. Journal of Agricultural Science and Technology16(4), 909-920.‏
Ali, M., Elsadek, A., & Salem, E. (2018). Stability parameters and AMMI analysis of quinoa (Chenopodium quinoa Willd.). Egyptian Journal of Agronomy, 40(1), 59-74.‏
Allaoui, A., Jellen, E. N., & Benlhabib, O. (2023). Evaluation of Chenopodium quinoa× C. berlandieri recombinant inbred lines (RILs) for heat tolerance. Chilean journal of agricultural research, 83(3), 260-271.‏
Al-Naggar, A. M.M., Younis, A.E.S.M., Atta, M. M., El-Moneim M. L. A., & Al-Metwally, M.S. (2022). Stability of Chenopodium quinoa Genotypes under different nitrogen fertilizer source and level using AMMI and GGE-biplot models. Plant Cell Biotechnology and Molecular Biology, 23(13-14), 1-20
Anchico, W., Spehar, C.R., & Vilela, M.S. (2020). Adaptability of quinoa genotypes to altitudes and population densities in Colombia. Bioscience Journal36, 14-21
Anchico-Jojoa, W., Peixoto, J.R., & de Oliveira Júnior, A. A. (2023). Agronomic characterization and interaction of genotype by environment of quinoa under conditions of Brazil and Colombia. Horticultura Brasileira41, e2629.‏
Angelini, J., Faviere, G.S., Bortolotto, E.B., Arroyo, L., Valentini, G.H., & Cervigni, G.D.L. (2019). Biplot pattern interaction analysis and statistical test for crossover and non-crossover genotype-by-environment interaction in peach. Scientia horticulturae252, 298-309.‏
Ayaşan, T. (2020). Determination of nutritional value of some quinoa varieties. Turkish Journal of Veterinary & Animal Sciences44(4), 950-954.‏
Bagheri, M., Anafjeh, Z., Taherian, M., Emami, A., Molaie, A., & Keshavarz, S. (2021). Assessment of adaptability and seed yield stability of selected quinoa (Chenopodium quinoa Willd.) genotypes in spring cropping systems in cold and temperate regions of Iran. Iranian Journal of Crop Sciences22(4), 376-387.‏ (In Persian).
Bagheri, M., Miri, Kh., Kloshkam, S.G., Anafjeh, Z., & Keshavarz, S. (2022). Assessment of adaptability and seed yield stability of autumn sown quinoa (Chenopodium quinoa Willd.) genotypes using AMMI analysis. Seed and Plant Journal, 38(4), 453-472. (In Persian).
Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 160(901), 268-282.‏
Begna, T. (2020). The role of genotype by environmental interaction in plant breeding.‏International Journal of Agriculture and Biosciences, 9(5), 209-215.
Bilate Daemo, B., Belew Yohannes, D., Mulualem Beyene, T., & Gebreselassie Abtew, W. (2023). AMMI and GGE biplot analyses for mega environment identification and selection of some high-yielding cassava genotypes for multiple environments. International Journal of Agronomy,1-13.‏ https://doi.org/10.1155/2023/6759698.
Cornelius, P. L., Seyedsadr, M., & Crossa, J. (1992). Using the shifted multiplicative model to search for “separability” in crop cultivar trials. Theoretical and Applied Genetics84, 161-172.‏
Dao, A., Alvar-BeltrÃ, J., Guira, A., Louis, N.Ã., Gnanda, A., & Sanou, J. (2020). Biplot analysis of test environments of quinoa (Chenopodium quinoa Willd.) in Burkina Faso. African Journal of Plant Science14(9), 358-371.‏
Eberhart, S. T., & Russell, W. (1966). Stability parameters for comparing varieties 1. Crop science, 6(1), 36-40.‏
Enyew, M., Feyissa, T., Geleta, M., Tesfaye, K., Hammenhag, C., & Carlsson, A. S. (2021). Genotype by environment interaction, correlation, AMMI, GGE biplot and cluster analysis for grain yield and other agronomic traits in sorghum (Sorghum bicolor L. Moench). Plos One16(10), e0258211.‏
Etaati, M., Ardakani, M. R., Bagheri, M., Paknejad, F., & Golzardi, F. (2023). Grain Yield Adaptability and Stability of Quinoa (Chenopodium quinoa Willd.) Genotypes Using Different Stability Indices. Journal of Crop Ecophysiology, 17, 1-14. (In Persian).
Finlay, K.W., & Wilkinson, G. N. (1963). The analysis of adaptation in a plant-breeding programme. Australian journal of agricultural research14(6), 742-754.‏
Gabriel, K.R. (1971). The biplot Graphic display of matrices with application to principal component analysis. Biometrika, 58, 453-467.
Gauch Jr, H. G. (2006). Statistical analysis of yield trials by AMMI and GGE. Crop science, 46(4), 1488-1500.‏
Gauch, H. 1992. Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier Science Publishers, 287p.
Jensen, C. R., Jacobsen, S.E., Andersen, M.N., Nunez, N., Andersen, S.D., Rasmussen, L., & Mogensen, V.O. (2000). Leaf gas exchange and water relation characteristics of field quinoa (Chenopodium quinoa Willd.) during soil drying. European journal of Agronomy13(1), 11-25.‏
Khare, V., Shukla, R.S., Pandey, S., Singh, S.K., & Singh, C. (2024). Exploring the genotype-environment interaction of bread wheat in ambient and high-temperature planting conditions: a rigorous investigation. Scientific Reports14(1), 2402.‏
Kirankumar, R., Ramesh, S., Chandana, B.R., Basanagouda, G., Gazala, P., Siddu, C.B., & Kalpana, M. P. (2023). AMMI Model and YREM-Based Grain Yield Stability of Horse Gram [Macrotyloma uniflorum (Lam.) Verdc.] YMV Disease Resistant Genotypes. Mysore Journal of Agricultural Sciences57(2),136-146.
López, M. L., & Recalde, M. A. (2016). The first quinoa (Chenopodium quinoa Willd) macrobotanical remains at Sierras del Norte (Central Argentina) and their implications in pre-Hispanic subsistence practices. Journal of Archaeological Science: Reports8, 426-433.‏
Mahant, R.D., Sahu, H., Mannade, A.K., Premi, V., & Sahu, R.K. (2024). Deciphering the interactions between genetic elements and environmental factors in rice (Oryza sativa L.) genotypes: Valuable perspectives unveiled through AMMI modeling and GGE biplots analysis.International Journal of Advanced Biochemistry Research‏, 8(3), 31-38
Maulana, H., Maxiselly, Y., Yuwariah, Y., & Ruswandi, D. (2023). Heritability and selection using GGE biplots and the Sustainability Index (SI) of maize mutants under different cropping systems in upland. Sustainability15(8), 6824.‏
Muhammad, S., Jadoon, S.A., Mohammad, F., Khalil, H.I., Ahmad, S., & Khan, U.F. (2023). AMMI analysis for grain yield in bread wheat recombinant inbred lines. Genetika55(1), 125-140.‏
Nowosad, K., Bocianowski, J., Kianersi, F., & Pour-Aboughadareh, A. (2023). Analysis of Linkage on Interaction of Main Aspects (Genotype by Environment Interaction, Stability and Genetic Parameters) of 1000 Kernels in Maize (Zea mays L.). Agriculture13(10), 2005.‏
Peñuelas, J., Zhao, C., Liu, B., Piao, S., Wang, X., Lobelli, D.B., Huang, Y., Huanga, M., Yao, Y., Bassuk, S., Ciais, P., Durand, J-L., Elliott, J., Ewert, F., Janssens, I., Li, T., Lint, E., Liu, Q., Martre, P., & Assengf, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America,‏114(35), 9326-9331.
Purchase, J. L., Hatting, H., & Van Deventer, C. S. (2000). Genotype× environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. South African Journal of Plant and Soil17(3), 101-107.‏
Sahmat, S.S., Rafii, M.Y., Oladosu, Y., Jusoh, M., Hakiman, M., & Mohidin, H. (2024). Unravelling the dynamics of genotype and environment interactions on chilli (Capsicum annuum L.) yield-related attributes in soilless planting systems. Scientific Reports, 14(1), 1698.‏
Shukla, G. K. (1972). Some statistical aspects of partitioning genotype-environmental components of variability.‏Heredity, 29, 237-245.
Silva, J.V., Reidsma, P., Baudron, F., Laborte, A.G., Giller, K.E., & van Ittersum, M. K. (2021). How sustainable is sustainable intensification? Assessing yield gaps at field and farm level across the globe. Global Food Security, 30, 100552.‏
Taleghani, D., Rajabi, A., Saremirad, A., & Fasahat, P. (2023). Stability analysis and selection of sugar beet (Beta vulgaris L.) genotypes using AMMI, BLUP, GGE biplot and MTSI. Scientific Reports, 13(1), 10019.‏
Thiam, E., Allaoui, A., & Benlhabib, O. (2021). Quinoa productivity and stability evaluation through varietal and environmental interaction. Plants10(4), 714.‏
Trimpler, K., Stockfisch, N., & Märländer, B. (2017). Efficiency in sugar beet cultivation related to field history. European Journal of Agronomy, 91, 1-9.‏
United Nations World Food Programme (WFP). (2020). COVID-19 Will Double Number of People Facing Food Crises Unless Swift Action Is Taken. Available online: https://www.wfp.org/news/covid-19-will-double-number-people-facing-food-crises-unless-swift-action-taken.
Utami, D.W., Maruapey, A., Maulana, H., Sinaga, P.H., Basith, S., & Karuniawan, A. (2023). The sustainability index and other stability analyses for evaluating superior Fe-tolerant rice (Oryza sativa L.). Sustainability15(16), 12233.‏
Yan, W. (2001). GGEbiplot—A Windows application for graphical analysis of multienvironment trial data and other types of two‐way data. Agronomy journal93(5), 1111-1118.‏
Yan, W., & Kang, M.S. (2002). GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. 1st edn. CRC Press, 288p.
Yan, W., & Tinker, N.A. (2006). Biplot analysis of multi-environment trial data: Principles and applications. Canadian journal of plant science86(3), 623-645.‏
Yan, W., Kang, M.S., Ma, B., Woods, S., & Cornelius, P. L. (2007). GGE biplot vs. AMMI analysis of genotype‐by‐environment data. Crop science47(2), 643-653.‏
Zobel, R.W., Wright, M.J., & Gauch Jr, H.G. (1988). Statistical analysis of a yield trial. Agronomy journal80(3), 388-393.‏