پیش‌بینی رویش علف‌های هرز خردل وحشی (Sinapis arvensis L.) و شلمی (Rapistrum rugosum (L) All.) در کلزا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی، گروه مهندسی کشاورزی، دانشگاه فنی و حرفه‌ای، تهران، ایران

2 استادیار، مرکز نحقیقات و آموزش کشاورزی و منابع طبیعی جنوب استان کرمان، سازمان تحقبقات، آموزش و ترویج کشاورزی، جیرفت، ایران

10.22034/plant.2024.141273.1104

چکیده

زمان­بندی رویش علف­های هرز یکی از مهم­ترین متغیرهایی است که نحوه واکنش گونه­ها به اقدامات مدیریتی را تعیین می­کند. از این رو برای پیش­بینی الگوی رویش خردل وحشی و شلمی تحت عملیات مختلف مدیریتی آزمایشی به صورت طرح اسپلیت پلات در قالب بلوک­های کامل تصادفی در 3 تکرار در آموزشکده کشاورزی ساری در سال 1401 اجرا شد. فاکتورهای آزمایشی، دو سیستم خاک­ورزی رایج و بدون خاک­ورزی و سه دوز مختلف علف­کش بوتیزان استار (صفر، 50 و 100 گرم ماده موثره در هکتار) بودند. تابع لجیستیک سه پارامتره روند کلی الگوی رویش خردل وحشی و شلمی را در برابر زمان دمای خاک (STT) به خوبی توصیف نمود. نتایج نشان داد خردل وحشی در سیستم بدون خاک­ورزی دارای میانگین زمان رویش کمتر (01/96) و شاخص سرعت رویش بالاتر (29/0) در مقایسه با سیستم خاک­ورزی رایج بود و با دریافت درجه روز رشد (T50) کمتر (21/742)، سریع­تر به 50 درصد رویش تجمعی خود دست یافت. در مقابل شلمی در سیستم خاک­ورزی رایج دارای میانگین زمان رویش کمتر (38/75) و شاخص سرعت رویش بالاتر (26/0) نسبت به سیستم بدون خاک­ورزی بود و با دریافت T50 پایین­تر (52/616)، سریع­تر به 50 درصد رویش تجمعی خود رسید. همچنین نتایج نشان داد که خردل وحشی و شلمی در دوز 100 گرم ماده موثره در هکتار بوتیزان استار دارای بیشترین میانگین زمان رویش (به ترتیب 10/103 و 30/78) و پایین­ترین شاخص سرعت رویش (به ترتیب 08/0 و 07/0) بودند و با دریافت T50 بالاتر (به ترتیب 67/851 و 75/640)، دیرتر به 50 درصد رویش تجمعی گیاهچه دست یافتند. در مجموع شلمی در هر دو سیستم خاک­ورزی و هر سه دوز علف­کش بوتیزان استار دارای میانگین زمان رویش کمتر در مقایسه با خردل وحشی بود و با دریافت T50 پایین­تر، سریع­تر به 50 درصد رویش تجمعی گیاهچه در ابتدای فصل رشد دست یافت. بر این اساس مرحله رشدی مناسب برای کنترل شلمی هنگامی است که هنوز موج اصلی گیاهچه­های گونه غالب دیگر رویش پیدا نکرده است. نتایج این تحقیق اطلاعات قوی در مورد پیش‌بینی زمان رویش علف‌های هرز خردل وحشی و شلمی ارائه می‌کند که می‌تواند به کشاورزان کمک کند تا تصمیمات مدیریتی بهتری بگیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Predicting the emergence of weeds of wild mustard (Sinapis arvensis L.) and turnipweed (Rapistrum rugosum (L) All.) in canola

نویسندگان [English]

  • Rahman Khakzad 1
  • Behrooz Khalil Tahmasbi 2
1 Lecturer, Department of Agronomy, Agriculture college of Sari, Technical Vocational University, Tehran, Iran
2 Assistant Professor, South Kerman Agricultural and Natural Resources Research and Education Center (AREEO), Jiroft, Iran
چکیده [English]

The timing of weed emergence is among the most important variables determining how species respond to management measures. In order to predict the emergence pattern of wild mustard (Sinapis arvensis L.) and turnipweed (Rapistrum rugosum (L) All.) under different management operation, a split plot experiment was conducted in a completely randomized block design with three replications in Sari Agricultural College in 2022. Two tillage systems (Conventional tillage and no-till) and three doses of Butisan Star (quinomerac + metazachlor) (0, 50, and 100 g ai ha-1) were considered as experimental factors. The three-parameter logistic function described well the general trend of the emergence pattern of wild mustard and turnipweed against soil thermal time (STT). The results showed that wild mustard in the no-till (NT) system had a shorter mean emergence time (MET) (96.01) and a higher emergence rate index (ERI) (0.29) compared to the conventional tillage (CT) system, and by receiving a lower growing degree days (T50) (742.21), it reached 50% of its cumulative emergence faster. On the other hand, turnipweed in CT had a lower MET (75.38) and a higher ERI (0.26) than NT, and by receiving a lower T50 (616.52), it reached 50% of its cumulative emergence faster. Also, wild mustard and turnipweed at the dose of 100 g ai ha-1 of Butisan Star had the highest MET (103.10 and 78.30 respectively) and the lowest ERI (0.08 and 0.07 respectively), and by receiving higher T50 (851.67 and 640.75 respectively), they achieved 50% cumulative emergence of seedlings later. In total, turnipweed in both tillage systems and all three doses of Botisan Star herbicide had a lower MET compared to wild mustard and by receiving lower T50, it achieved 50% cumulative seedling emergence faster at the beginning of the growing season. On this basis, growth stage suitable for controlling turnipweed, when the main wave of seedlings of other species still have not found emergence. The results of this research provide robust information on predicting the emergence time of wild mustard and turnipweed, which can help growers make better management decisions.

کلیدواژه‌ها [English]

  • Emergence pattern
  • tillage
  • no-till
  • herbicide dose
  • cumulative emergence
Azizi, M., Soltani, D., & Khavari, E.  (1999).  RapeseedPhysiology, Agronomy, Breeding, and Biotechnology. Jihad-e-Daneshghahi of Mashhad Publication. PP 230.
Baskin, C.C.,& Baskin, J.M. (2014). Seeds: ecology, biogeography, and evolution of dormancy and germination (2nd edn). San Diego, Academic Press/Elsevier.
Benech-Arnold, R., Sa´nchez, R.A., Forcella, F., Kruk, B.C., &Ghersa, C.M. (2000). Environmental control of dormancy in weed seed banks in soil. Field Crops Research, 67, 105–122.
Benvenuti, S., Macchia, M., &Mifle, S. (2001). Quantitative analysis of emergence of seedlings from buried weed seed with increasing soil depth. Weed Science, 49, 528–535.
Bilbro, J.D., &Wanjura, D.F. (1982). Soil crusts and cotton emergence relationships.  Transactions of American Society of Agricultural Engineers, 25, 1485– 1488.
Bolfrey-arku, G.E.K., Chauhan, B.S., & Johnson, D.E. (2011). Seed germination ecology of itchgrass (Rottboelliacochinchinensis). Weed Science, 59, 182–187.
Bond, W., Davies, G., & Turner, R. (2004). The biology and non-chemical control of common chickweed (Stellaria media L.). United Kingdom: Henry Doubleday Research Association.‏
Brown, R.F., & Mayer, D.G. (1988). Representing cumulative germination. The use of the Weibull function and other empirically derived curves. Annals of Botany, 61, 127–138.
Chauhan, B.S., Gill, G., &Preston, C. (2006). Factors affecting turnipweed (Rapistrumrugosum) seed germination in southern Australia. Weed Science, 54, 1032-1036.
Cici, S.Z.H., & Van Acker, R.C. (2009). A review of the recruitment biology of winter annual weeds in Canada. Canadian Journal of Plant Science, 89, 575–589.
Clayton, G.W., Harker, K.N., O’donovan, J.T., Baig, M.N., &Kidnie,  M.J.  (2002). Glyphosat timing and tillage system effects on glyphosate-tolerant canola (Brassica napus). Weed Technology, 16, 124-130.
Dorado, J., Sousa, E., Calha, I.M., Gonzalez-Avdujar, J.L., Fernandez L.A., & Quintanilla, I.L. (2009). Predicting weed emergence in maize crops under two contrasting climatic conditions. Weed Research, 49, 251–260.
Eizenberg, H., Colquhoun, J.B., & Mallory-Smith, C.A. (2005). A predictive degree-d model for small broomrape (Orobanche minor) parasitism in red clover in Oregon. Weed Science, 53, 37–40.
Forouzandeh, S.A., Elahifard, E., Heidarpour, N., &Siyahpoush, A.A.R. (2017).  Effect of tillage systems and herbicide application in weed control of canola (Brassica napus L.).  Journal of Crop Ecophysiology, 11, 163-177.
Gritsenko, M.M. (2012). An effective herbicide in rape crops. Agriculture and Plant Protection: scientific practical journal. (agris.fao.org/agrissearch/search.do?recordid=by2012001022).
Gummerson, R.J. (1986). The effect of constant temperatures and osmotic potential on the germination of sugar beet. Journal of Experimental Botany, 41, 1431–1439.
Harker K.N., O'Donovan J.T., Smith E.G., Johnson E.N., Peng G., Willenborg C.J., &Grenkow L.A. (2014). Seed size and seeding rate effects on canola emergence, development, yield and seed weight. Canadian Journal of Plant Science, 95, 1-8.
Hasty, R.F., Sprague, C.L., & Hager, A.G. (2004). Weed control with fall and early-preplant herbicide applications in no-till soybean. Weed Technology, 18, 887–892.
Izquierdo, J., Gonzalez-Andujar, J.L., Bastida, F., Lezaun, J.A., & Del Arco, M.J.S. (2009). A thermal time model to predict corn poppy (Papaver rhoeas) emergence in cereal field. Weed Science, 57, 660–664.
Jennrich, H., Nuyken, W., & Jung, B. (1993). BAS526H, a new combination for flexible weed control inoilseed rape. Mededelingen Van de Faulteit Universiteit Gent,58, 853-861.
Kegode, G.O., Pearce, R.B., & Bailey, T.B. (1998). Influence of fluctuating temperatures on emergence of shattercane (Sorghum bicolor) and giant foxtail (Setariafaberi). Weed Science,46, 330–335.
Lee, A.T., & Witt, W.W. (2001). Persistence and efficacy of fall-applied simazine and atrazine. Proceedings of North Central Weed Science Society, 56, 50.
Leon, R.G., & Owen, M.D.K. (2006). Tillage systems and seed dormancy effects on common waterhemp (Amaranthus tuberculatus) seedling emergence. Weed Science, 54, 1037–1044.
Manalil, S., Ali, H.H., &Chauhan, B.S. (2018). Germination ecology of turnip weed (Rapistrumrugosum (L.) All.) in the northern regions of Australia. PLoS One, 13, e0201023.
Marschner, C.A., Colucci, I., Stup, R.S., Westbrook, A.S., Brunharo, C.A.C.G., DiTommaso, A., &Mesgaran, M.B. (2024). Modeling weed seedling emergence for time-specific weed management: a systematic review. Weed Sci, 72, 1-17.
Mirshekari B. (2010). Study effects of different times of weeds control on morphological traits, yield and harvest index of three winter rapeseed  cultivars. Journal of Crop Production, 4, 51-66.
Oryokot, J.O., & Swanton, C.J. (1997). Effect of tillage and corn on pigweed (Amaranthus spp.) seedling emergence and density. Weed Science, 45, 120–126.
Pacanoski, Z.  (2014).  Application  time  and  herbicide  rate  effects  on  weeds  in  oilseed  rape  (Brassica  napus  var. oleifera). Herbologia, 14, 20-24.
Radosevish, S., Holt, J., &Ghersa, C. (2007). Ecology of Weeds and Invasive Plants: Relationship to Agriculture and Natural Resource Management.Wiley, New York.
Shimi, P., Darvish, N., &Mighani, F. (2014). Investigating the efficiency of new Butisan Star herbicide in controlling weeds and yield of canola. Journal of Crop Production Research,6, 31-38.
Soltani, E., Soltani, A., Galeshi, S., Ghaderi-Far, F., &Zeinali, E. (2013). Seed germination modeling of wild mustard (Sinapis arvensis L.) as affected by temperature and water potential: hydrothermal time model. Journal of Plant Production, 20, 19-33.
Soltani, E., Soltani, A., Galeshi, S., Ghaderi-Far, F., &Zeinali, E. (2014). Quantification of seedling emergence of volunteer canola and wild mustard under various burial depths. Iranian Journal of Seed Research, 1, 1-10.
Spokas, K., &Forcella, F. (2009). Software tools for weed seed germination modeling. Weed Science, 57, 216-227.
Tomlin, C.D.S. (2004). The PesticideManual. British Crop Protection Council. pp. 1344.
Vercellino, R.B., Pandolfo, C.E., Cerrota, A., Cantamutto, M., &Presotto, A. (2019). The roles of light and pericarp on seed dormancy and germination in feral Raphanus sativus (Brassicaceae). Weed Research, 59, 396-406.
Zand, E., Baghestani, M.A., Nezamabadi, N., Shimi, P., & Mousavi, S.K.  (2019). A guide for herbicides in Iran. UniversityPress Center, 216 pp.
Zhang, C.J., Yook, M.J., Park, H.R., Lim, S.H., Kim, J.W., Nah, G., Song, H.R., Jo, B.H., Roh, K.H.,& Park, S. (2018). Assessment of potential environmental risks of transgene flow in smallholder farming systems in Asia: Brassica napus as a case study in Korea. Science of The Total Environment, 53, 688-695.