اثر محلول پاشی منابع مختلف کلسیم بر صفات رشدی و عناصر غذایی گل رز رقم سامورایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم باغبانی و مهندسی فضای سبز، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد، گروه علوم باغبانی و مهندسی فضای سبز، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 استادیار، گروه علوم باغبانی و مهندسی فضای سبز، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

4 استاد، گروه خاکشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

10.22034/plant.2024.141925.1121

چکیده

گل رز به دلیل لطافت و عمر گلجایی کم نیازمند مراقبت ویژه است، اما استفاده از کلسیم می‌تواند به بهبود رشد، کیفیت و ماندگاری آن کمک کند. این مطالعه در قالب طرح کاملاً تصادفی با هدف بررسی تأثیر سه منبع کلسیم (آب مقطر به عنوان شاهد، سیلیکات کلسیم، و آمینوکلات کلسیم) با غلظت 160 پی پی ام بر رشد و کیفیت گل رز رقم 'سامورایی' در بستر هیدروپونیک طراحی و اجرا شد. نتایج نشان داد که محلول‌پاشی با سیلیکات کلسیم و آمینوکلات کلسیم صفات رشدی از جمله قطر ساقه، وزن تر ساقه، قطر گل، تعداد گل‌ و سطح برگ را نسبت به شاهد بهبود داد. سیلیکات کلسیم و آمینوکلات کلسیم سرعت فتوسنتز را به ترتیب 94/36 و 78/30 درصدافزایش دادند. بیشترین میزان آنتوسیانین (39/8) در تیمار آمینوکلات کلسیم مشاهده شد، و غلظت کلسیم برگ و گلبرگ در تیمار سیلیکات کلسیم به ترتیب 91/47 و 67/51 درصد نسبت به شاهد افزایش یافت. آمینوکلات کلسیم نیز باعث افزایش 86/47 درصدی غلظت کلسیم ریشه و 3/3 روز افزایش عمر گلجایی نسبت به شاهد شد. علاوه بر این، سیلیکات کلسیم غلظت آهن را 34/11 درصد، منگنز را 74/91 درصد و نیتروژن برگ را 88/5 درصد افزایش داد، در حالی که آمینوکلات کلسیم غلظت مس برگ و ریشه را به ترتیب 4 و 41/25 درصد، فسفر برگ را 90/25 درصد و پتاسیم ریشه را 84/74 درصد افزایش داد. این نتایج نقش مهم کلسیم، به‌ویژه آمینوکلات کلسیم، را در بهبود جذب عناصر غذایی و افزایش رشد و کیفیت گل‌های رز نشان می‌دهد

کلیدواژه‌ها


عنوان مقاله [English]

The effect of foliar application of different calcium sources on growth traits and nutrient elements of Rosa 'Samurai'

نویسندگان [English]

  • Saeed Khosravi 1
  • Ali Tehranifar 2
  • Yahya Selahvarzi 3
  • Amir Hossein Khoshgoftarmanesh 4
  • Leyla Cheheltanan 1
1 Ph.ِD. student, Department of Horticultural Science and Landscape, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Professor, Department of Horticultural Science and Landscape, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 Assistant Professor, Department of Horticultural Science and Landscape, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
4 Professor, Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

Roses, due to their delicacy and short vase life, require special care; however, the use of calcium can help improve their growth, quality, and longevity. This study was designed and conducted as a completely randomized design to investigate the effect of three calcium sources (distilled water as a control, calcium silicate, and calcium amino chelate) at a concentration of 160 ppm on the growth and quality of Rosa 'Samurai' in a hydroponic system. The results showed that foliar application of calcium silicate and calcium amino chelate improved growth traits, including stem diameter, fresh stem weight, flower diameter, flower count, and leaf area compared to the control. Calcium silicate and calcium amino chelate increased the photosynthesis rate by 36.94% and 30.78%, respectively. The highest anthocyanin content (8.39) was observed in the calcium amino chelate treatment, while the calcium concentrations in leaves and petals increased by 47.91% and 51.67%, respectively, in the calcium silicate treatment compared to the control. Calcium amino chelate also resulted in a 47.86% increase in root calcium concentration and a 3.3-day increase in vase life compared to the control. Additionally, calcium silicate increased iron concentration by 11.34%, manganese by 91.74%, and leaf nitrogen by 5.88%, while calcium amino chelate increased leaf and root copper concentrations by 4% and 25.41%, phosphorus concentration in leaves by 25.90%, and root potassium concentration by 74.84%. These results demonstrate the significant role of calcium, particularly calcium amino chelate, in enhancing nutrient absorption and improving the growth and quality of rose flowers

کلیدواژه‌ها [English]

  • Calcium amino chelate
  • calcium silicate
  • vase life
  • photosynthesis
 Hussein, M. A. (2023). Effect of amino acids, mono-potassium phosphate, and calcium foliar application on flowering, yield, and fruit quality of mango “Ewaise” cultivar. Alexandria Science Exchange Journal, 44(2), 225-235.
Abdalla, M. (2009). The response of dendranthema grandiflora, Tzvelev, cv. Icecap plants to calcium silicate slag and DHT treatments. Journal of Plant Production, 34(6), 6781-6790.
Abdolmaleki, M., Khosh, K. M., Eshghi, S., & Ramezanian, A. (2015). Improvement in vase life of cut rose cv. “Dolce Vita” by preharvest foliar application of calcium chloride and salicylic acid. Journal of Horticultural Science & Ornamental Plants, 7(1), 1-10.
Aghdam, M., Asil, M. H., Ghasemnezhad, M., & Mirkalaei, S. M. (2019). Effects of pre-harvest applications of different sources of calcium on the cell wall fractions and stem bending disorder of Gerbera (Gerbera jamesonii L.) cultivar flowers. Advances in Horticultural Science, 33(1), 57-66.
Aghdam, M. S., Hassanpouraghdam, M. B., Paliyath, G., & Farmani, B. (2012). The language of calcium in postharvest life of fruits, vegetables, and flowers. Scientia Horticulturae, 144, 102-115.
Almeida, P. H., Mógor, Á., Ribeiro, A., Heinrichs, J., & Amano, E. (2016). Increase in lettuce (Lactuca sativa L.) production by foliar calcium application. Australian Journal of Basic and Applied Sciences, 10(16), 161-167.
Amor, F. D., & Marcelis, L. (2003). Regulation of nutrient uptake, water uptake, and growth under calcium starvation and recovery. The Journal of Horticultural Science and Biotechnology, 78(3), 343-349.
Baas, R., Van Oers, S., Silber, A., Bernstein, N., Ioffe, M., Keinan, M., & Bar-Tal, A. (2023). Calcium distribution in cut roses as related to transpiration. The Journal of Horticultural Science and Biotechnology, 78(1), 1-9.
Banijamali, S. M., Feizian, M., Bayat, H., & Mirzaei, S. (2018). Effects of nitrogen forms and calcium amounts on growth and elemental concentration in Rosa hybrida cv. ‘Vendentta’. Journal of Plant Nutrition, 41(9), 1205-1213.
Bar-Tal, A., Baas, R., Ganmore-Neumann, R., Dik, A., Marissen, N., Silber, A., & Elad, Y. (2001). Rose flower production and quality as affected by Ca concentration in the petal. Agronomie, 21(4), 393-402.
Bauer, P., Elbaum, R., & Weiss, I. M. (2011). Calcium and silicon mineralization in land plants: transport, structure and function. Plant Science, 180(6), 746-756.
Bendahmane, M., Dubois, A., Raymond, O., & Le Bris, M. (2013). Genetics and genomics of flower initiation and development in roses. Journal of Experimental Botany, 64(4), 847-857.
Bennett, K., Jent, J., Samarakoon, U. C., Schnabel, G., & Faust, J. E. (2020). Reduction of Botrytis cinerea infection on petunia flowers following calcium spray applications. HortScience, 55(2), 188-191.
Cho, H. R., Joung, H. Y., Lim, K. B., & Kim, K. S. (2013). Effect of calcium and silicate application on pathogenicity of Erwinia carotovora subsp. carotovora in Zantedeschia spp. Horticulture, Environment and Biotechnology, 54(4), 364-371.
Coutinho, P. W. R., de Moraes Echer, M., Braga, G. C., Guimarães, V. F., do Carmo Lana, M., Alves, T. N., & Brito, T. S. (2020). Effect of pre-harvest calcium silicate on post-harvest quality of tomatoes. Research, Society and Development, 9(11), e74791110148-e74791110148.
Dolatabadian, A., Sanavy, S. A. M. M., Gholamhoseini, M., Joghan, A. K., Majdi, M., & Kashkooli, A. B. (2013). The role of calcium in improving photosynthesis and related physiological and biochemical attributes of spring wheat subjected to simulated acid rain. Physiology and Molecular Biology of Plants, 19, 189-198.
Fageria, N., Filho, M. B., Moreira, A., & Guimarães, C. (2009). Foliar fertilization of crop plants. Journal of Plant Nutrition, 32(6), 1044-1064.
Faroutine, G., Arteaga-Ramírez, R., Pineda-Pineda, J., & Vázquez-Peña, M. A. (2023). Effect of calcium silicate and moisture content of the substrate on the growth and productivity parameters of cucumber. Chilean Journal of Agricultural Research, 83(3), 334-346.
Haghighi, M., Khosravi, S., Sehar, S., & Shamsi, I. H. (2023). Foliar-sprayed calcium-tryptophan mediated improvement in physio-biochemical attributes and nutritional profile of salt-stressed Brassica oleracea var. italica. Scientia Horticulturae, 307, 111529.
Halevy, A., Torre, S., Borochov, A., Porat, R., Friedman, H., Meir, S., & Philosoph-Hadas, S. (2001). Calcium in regulation of postharvest life of flowers. Acta Horticulturae, 345, 345-352.
Hepler, P. K. (2005). Calcium: a central regulator of plant growth and development. The Plant Cell, 17(8), 2142-2155.
Hothem, S. D., Marley, K. A., & Larson, R. A. (2003). Photochemistry in hoagland's nutrient solution. Journal of Plant Nutrition, 26(4), 845-854.
Ismail, S. A., Fathy, W., & Ganzour, S. K. (2022). Impact of foliar application of calcium nitrate and chelated calcium in combination with boric acid on the vegetative growth, yield, quality components, and insect control of globe artichoke. Journal of Plant Production, 13(9), 743-752.
Kacar, B. (1994). Bitki ve toprağın kimyasal analizleri. Ankara Üniversitesi Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı, 3, 705.
Łysiak, G. P. (2022). Ornamental flowers grown in human surroundings as a source of anthocyanins with high anti-inflammatory properties. Foods, 11(7), 948.
Mahajan, M., & Pal, P. K. (2020). Flower yield and chemical composition of essential oil from Rosa damascena under foliar application of Ca (NO₃) ₂ and seasonal variation. Acta Physiologiae Plantarum, 42(2), 23.
Mobaraki, L., Rezapour Fard, J., & Noruzi, P. (2023). Effects of pre-harvest application of calcium silicate and calcium chelate on some morpho-physiological parameters of cut rose (Rosa hybrida cv. Dolce Vita). Plant Process and Function, 12(57), 14.
Moradinezhad, F., Hassanpour, S., & Sayyari, M. H. (2018). Influence of pre-harvest spray of calcium chloride and salicylic acid on physicochemical and quality properties of fresh seedless barberry fruit. Journal of Horticultural Science, 32, 61-74. (In Persian).
Naeem, M., Naeem, M. S., Ahmad, R., Ihsan, M. Z., Ashraf, M. Y., Hussain, Y., & Fahad, S. (2018). Foliar calcium spray confers drought stress tolerance in maize via modulation of plant growth, water relations, proline content, and hydrogen peroxide activity. Archives of Agronomy and Soil Science, 64(1), 116-131.
Nayyar, H., & Kaushal, S. (2002). Alleviation of negative effects of water stress in two contrasting wheat genotypes by calcium and abscisic acid. Biologia Plantarum, 45, 65-70.
Niu, J., Liu, C., Huang, M., Liu, K., & Yan, D. (2021). Effects of foliar fertilization: a review of current status and future perspectives. Journal of Soil Science and Plant Nutrition, 21, 104-118.
Palta, J. P. (1996). Role of calcium in plant responses to stresses: linking basic research to the solution of practical problems. Plant Physiology and Biochemistry, 31(1), 51–57.
Saeedi, R., Etemadi, N., Nikbakht, A., Khoshgoftarmanesh, A. H., & Sabzalian, M. R. (2015). Calcium chelated with amino acids improves quality and postharvest life of lisianthus (Eustoma grandiflorum cv. Cinderella Lime). HortScience, 50(9), 1394-1398.
Sairam, R. K., Vasanthan, B., & Arora, A. (2011). Calcium regulates Gladiolus flower senescence by influencing antioxidative enzymes activity. Acta Physiologiae Plantarum, 33, 1897-1904.
Seifu, Y., & Deneke, S. (2017). Effect of calcium chloride and calcium nitrate on potato (Solanum tuberosum L.) growth and yield. Journal of Horticulture, 4(3), 207-211.
Seydmohammadi, Z., Roein, Z., & Rezvanipour, S. (2020). Accelerating the growth and flowering of Eustoma grandiflorum by foliar application of nano-ZnO and nano-CaCO₃. Plant Physiology Reports, 25, 140-148.
Shams, M., Etemadi, N., Baninasab, B., Ramin, A. A., & Khoshgoftarmanesh, A. H. (2012). Effect of boron and calcium on growth and quality of ‘Easy Lover’ cut rose. Journal of Plant Nutrition, 35(9), 1303-1313.
Souri, M. K. (2016). Aminochelate fertilizers: the new approach to the old problem; a review. Open Agriculture, 1(1), 118-123.
Souri, M. K., & Hatamian, M. (2019). Aminochelates in plant nutrition: a review. Journal of Plant Nutrition, 42(1), 67-78.
Tofighi Alikhani, T., Tabatabaei, S. J., Mohammadi Torkashvand, A., Khalighi, A., & Talei, D. (2021). Effects of silica nanoparticles and calcium chelate on the morphological, physiological, and biochemical characteristics of gerbera (Gerbera jamesonii L.) under hydroponic condition. Journal of Plant Nutrition, 44(7), 1039-1053.
Torre, S., Borochov, A., & Halevy, A. H. (1999). Calcium regulation of senescence in rose petals. Physiologia Plantarum, 107(2), 214-219.
Türkmen, Ö., Dursun, A., Turan, M., & Erdinç, Ç. (2004). Calcium and humic acid affect seed germination, growth, and nutrient content of tomato (Lycopersicon esculentum L.) seedlings under saline soil conditions. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 54(3), 168-174.
Verdonk, J. C., van Ieperen, W., Carvalho, D. R., van Geest, G., & Schouten, R. E. (2023). Effect of preharvest conditions on cut-flower quality. Frontiers in Plant Science, 14, 1281456.
Wagner, G. J. (1979). Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiology, 64(1), 88-93.
Wang, Q., Yang, S., Wan, S., & Li, X. (2019). The significance of calcium in photosynthesis. International Journal of Molecular Sciences, 20(6), 1353.
Wei, L., Wang, C., & Liao, W. (2021). Hydrogen sulfide improves the vase life and quality of cut roses and chrysanthemums. Journal of Plant Growth Regulation, 1-16.
White, P. J. (2000). Calcium channels in higher plants. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1465(1-2), 171-189.
White, P. J., & Broadley, M. R. (2003). Calcium in plants. Annals of Botany, 92(4), 487-511.
Youssef, S., Abd Elhady, S. A. E., Abu El-Azm, N. A. I., & El-Shinawy, M. Z. (2017). Foliar application of salicylic acid and calcium chloride enhances growth and productivity of lettuce (Lactuca sativa). Egyptian Journal of Horticulture, 44(1), 1-16.
Zhang, Z., Wu, P., Zhang, W., Yang, Z., Liu, H., Ahammed, G. J., & Cui, J. (2020). Calcium is involved in exogenous NO-induced enhancement of photosynthesis in cucumber (Cucumis sativus L.) seedlings under low temperature. Scientia Horticulturae, 261, 108953.