شناسایی ژن کلیدی CPT1 در مسیر بیوسنتزی لاستیک طبیعی در گیاه Chodrilla juncea و استخراج لاستیک به روش آنزیمی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه تولید و ژنتیک گیاهی ، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

2 دانشیار، گروه تولید و ژنتیک گیاهی ، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

10.22034/plant.2024.141894.1119

چکیده

لاستیک طبیعی یک ماده حیاتی برای صنعت است که به‌طور معمول از درخت کائوچو (Hevea brasiliensis) به‌ دست می-آید. با توجه این‌که امکان کشت این درخت در بسیاری از مناطق وجود ندارد، یافتن منبع جایگزین برای این ماده باارزش ضروری به نظر می‌رسد. در این مطالعه وجود لاستیک طبیعی در گیاه قندرون با نام علمی Chondrilla juncea از لحاظ مولکولی و بیوشیمیایی بررسی شد . نتایج نشان داد با استفاده از روش آنزیمی می‌توان مقدار قابل‌ملاحظه‌ای لاستیک طبیعی در فصل پاییز از ریشه‌ی این گیاه استخراج نمود. همچنین در مطالعه حاضر ژن کلیدی سیس‌پرنیل ترانسفراز (CPT) دخیل در بیوسنتز لاستیک ‌طبیعی با استفاده از آغازگرهای مختلف روی DNA ژنومی این گیاه با روش گام‌زنی شناسایی و توالی یابی شد. پس از سرهم‌بندی قطعات به‌دست‌آمده، توالی کامل این ژن به دست آمد. مقایسه توالی نوکلئوتیدی و پروتئینی این ژن شباهت زیادی به ژن CPT در سایر گیاهان این خانواده و حتی درخت کائوچو نشان داد. نتایج این تحقیق اولین گزارش تولید لاستیک طبیعی در گیاه قندرون است. با مطالعات بیشتر در این زمینه و برنامه‌های به‌نژادی شاید بتوان این گیاه را به‌عنوان منبع جدید تجاری برای تولید لاستیک طبیعی معرفی نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Identification of the key CPT1 gene in natural rubber biosynthetic pathway in Chodrilla juncea and extraction of rubber by enzymatic method

نویسندگان [English]

  • Benyamin Jalili 1
  • Asghar Mirzaie-Asl 2
  • Hedayat Bagheri 2
1 Ph.D. student, Department of Plant Production and Genetics, Faculty of Agriculture, University of Bu-Ali Sina, Hamedan, Iran
2 Associate Professor, Department of Plant Production and Genetics, Faculty of Agriculture, University of Bu-Ali Sina, Hamedan, Iran
چکیده [English]

Natural rubber is a vital material for the industry, which is usually obtained from the rubber tree (Hevea brasiliensis). Considering that it is not possible to grow this tree in many areas, it seems necessary to find an alternative source for this valuable material. In this study, the presence of natural rubber in the Ghandaroun plant with the scientific name Chondrilla juncea was investigated from a molecular and biochemical point of view. The results showed that a significant amount of natural rubber can be extracted from the roots of this plant in the autumn season by using the enzyme method. Also, in the present study, the key gene of cis-prenyl transferase (CPT) involved in the biosynthesis of natural rubber was identified and sequenced using different primers on the genomic DNA of this plant. After assembling the sequences obtained, the complete sequence of this gene was obtained. Comparing the nucleotide and protein sequences of this gene showed a great similarity to the CPT gene in other plants of this family and even the rubber tree. This article represents the first report of natural rubber production in Ghandaroun plant. Further investigations and breeding programs, it may position this plant as a novel commercial source for natural rubber production.

کلیدواژه‌ها [English]

  • : Cis-prenyl transferase
  • ghandaroun
  • rubber tree
  • sequencing
Aboul-Maaty, N. A. F., & Oraby, H. A. S. (2019). Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bulletin of the National Research Centre43(1), 1-10.
Asawatreratanakul, K., Zhang, Y. W., Wititsuwannakul, D., Wititsuwannakul, R., Takahashi, S., Rattanapittayaporn, A., & Koyama, T. (2003). Molecular cloning, expression and characterization of cDNA encoding cis‐prenyltransferases from Hevea brasiliensis: A key factor participating in natural rubber biosynthesis. European Journal of Biochemistry, 270(23), 4671-4680.
Brown, D., Feeney, M., Ahmadi, M., Lonoce, C., Sajari, R., Di Cola, A., & Frigerio, L. (2017). Subcellular localization and interactions among rubber particle proteins from Hevea brasiliensis. Journal of experimental botany, 68(18), 5045-5055.
Buranov, A. U., & Elmuradov, B. J. (2010). Extraction and characterization of latex and natural rubber from rubber-bearing plants. Journal of agricultural and food chemistry58(2), 734-743.
Chaboudez, P. (1994). Patterns of clonal variation in skeleton weed (Chondrilla juncea), an apomictic species. Australian Journal of Botany, 42(3), 283-295.
Cherian, S., Ryu, S. B., & Cornish, K. (2019). Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant biotechnology journal17(11), 2041-2061.
Cornish, K. (2001). Similarities and differences in rubber biochemistry among plant species. Phytochemistry, 57(7), 1123-1134.
Cornish, K., Castillón, J., & Scott, D. J. (2000). Rubber molecular weight regulation, in vitro, in plant species that produce high and low molecular weights in vivo. Biomacromolecules, 1(4), 632-641.
da Costa, B. M., Keasling, J. D., & Cornish, K. (2005). Regulation of rubber biosynthetic rate and molecular weight in hevea Hevea b rasiliensis by metal cofactor. Biomacromolecules6(1), 279-289.
Dai, L., Kang, G., Li, Y., Nie, Z., Duan, C., & Zeng, R. (2013). In-depth proteome analysis of the rubber particle of Hevea brasiliensis (Para rubber tree). Plant molecular biology82, 155-168.
De Rodriguez, D. J., & Kuruvadi, S. (1991). Comparison of Soxhlet and homogenizer extraction methods to determine rubber and resin content of Mexican guayule plants. Bioresource technology35(2), 179-183.
Duke, S. O. (1994). Glandular trichomes-a focal point of chemical and structural interactions. International Journal of Plant Sciences155(6), 617-620.
Grabińska, K. A., Edani, B. H., Park, E. J., Kraehling, J. R., & Sessa, W. C. (2017). A conserved C-terminal RXG motif in the NgBR subunit of cis-prenyl transferase is critical for prenyl transferase activity. Journal of Biological Chemistry, 292(42), 17351-17361.
Grabińska, K. A., Park, E. J., & Sessa, W. C. (2016). Cis-Prenyltransferase: new insights into protein glycosylation, rubber synthesis, and human diseases. Journal of Biological Chemistry291(35), 18582-18590.
Martinez, M. E., Jorquera, L., Poirrier, P., Díaz, K., & Chamy, R. (2021). Effect of the carbon source and plant growth regulators (PGRs) in the induction and maintenance of an in vitro callus culture of Taraxacum officinale (L) weber Ex FH Wigg. Agronomy11(6), 1181.
Mozaffarian, V. (1996). A dictionary of Iranian plant names. Tehran: Farhang Moaser, 396, 396-8.(In persian).
Naik, P. M., & Al-Khayri, J. M. (2016). Abiotic and biotic elicitors-role in secondary metabolites production through in vitro culture of medicinal plants. Abiotic and biotic stress in plants—recent advances and future perspectives. Rijeka: InTech, 247-277.
Pickard, W. F. (2008). Laticifers and secretory ducts: two other tube systems in plants. New Phytologist177(4), 877-888.
Ramirez‐Cadavid, D. A., Cornish, K., Hathwaik, U., Kozak, R., McMahan, C., & Michel Jr, F. C. (2019). Development of novel processes for the aqueous extraction of natural rubber from Taraxacum koksaghyz (TK). Journal of Chemical Technology & Biotechnology94(8), 2452-2464.
Ramirez-Cadavid, D. A., Valles-Ramirez, S., Cornish, K., & Michel Jr, F. C. (2018). Simultaneous quantification of rubber, inulin, and resins in Taraxacum kok-saghyz (TK) roots by sequential solvent extraction. Industrial crops Crops and productsProducts, 122, 647-656.
Salehi, M., Cornish, K., Bahmankar, M., & Naghavi, M. R. (2021). Natural rubber-producing sources, systems, and perspectives for breeding and biotechnology studies of Taraxacum kok-saghyzIndustrial Crops and Products170, 113667.
Schmidt, T., Hillebrand, A., Wurbs, D., Wahler, D., Lenders, M., Schulze Gronover, C., & Prüfer, D. (2010). Molecular cloning and characterization of rubber biosynthetic genes from Taraxacum koksaghyz. Plant molecular Molecular biology Biology reporterReporter, 28, 277-284.
Sikandar, S., Ujor, V. C., Ezeji, T. C., Rossington, J. L., Michel Jr, F. C., McMahan, C. M., & Cornish, K. (2017). Thermomyces lanuginosus STm: A source of thermostable hydrolytic enzymes for novel application in extraction of high-quality natural rubber from Taraxacum kok-saghyz (Rubber dandelion). Industrial Crops and Products103, 161-168.
Spanò, D., Pintus, F., Esposito, F., Loche, D., Floris, G., & Medda, R. (2015). Euphorbia characias latex: micromorphology of rubber particles and rubber transferase activity. Plant Physiology and Biochemistry87, 26-34.
Sproul, E., Summers, H. M., Seavert, C., Robbs, J., Khanal, S., Mealing, V., & Quinn, J. C. (2020). Integrated techno-economic and environmental analysis of guayule rubber production. Journal of Cleaner Production, 273, 122811.
Stonebloom, S. H., & Scheller, H. V. (2019). Transcriptome analysis of rubber biosynthesis in guayule (Parthenium argentatum gray). BMC plant Plant biologyBiology19, 1-10.
Tata, S. K., Hong, S. B., Bae, S. W., Park, J. C., & Ryu, S. B. (2022). Seasonal Variation variation of Rubber rubber Production production in Russian Dandelion, Taraxacum kok-saghyz, Grown grown in Korea. Korean Journal of Plant Resources35(3), 399-404.
Uthup, T. K., Rajamani, A., Ravindran, M., & Saha, T. (2019). Distinguishing CPT gene family members and vetting the sequence structure of a putative rubber synthesizing variant in Hevea brasiliensisGene689, 183-193.
Van Beilen, J. B., & Poirier, Y. (2007). Establishment of new crops for the production of natural rubber. TRENDS in Biotechnology25(11), 522-529.
Verpoorte, R., Contin, A., & Memelink, J. (2002). Biotechnology for the production of plant secondary metabolites. Phytochemistry reviews1, 13-25.
Wallrapp, F. H., Pan, J. J., Ramamoorthy, G., Almonacid, D. E., Hillerich, B. S., Seidel, R., & Poulter, C. D. (2013). Prediction of function for the polyprenyl transferase subgroup in the isoprenoid synthase superfamily. Proceedings of the National Academy of Sciences110(13), 1196-1202.