Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., & Meftah Kadmiri, I. (2021). Nitrogen fixing azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Frontier in Microbiology, 12, 628379-628382. https;//doi.org/10.3389/fmicb.2021.628379.
Acosta-Jurado, S., Rodríguez-Navarro, D. N., Kawaharada, Y., Perea, J. F., Gil-Serrano, A., Jin, H., & Ruiz-Sainz, J. E. (2016). Sinorhizobium fredii HH103 invades Lotus burttii by crack entry in a Nod Factor–and surface polysaccharide–dependent manner.
Molecular Plant-Microbe Interactions,
29(12), 925-937. https;//doi.org/
10.1094/MPMI-09-16-0195-R.
Albersheim, P., Darvill, A., Roberts, K., Sederoff, R., & Staehelin, A. (2011). Cell walls and plant-microbe interactions.
Plant cell walls: From chemistry to biology, 319-363.
https://doi.org/10.1016/j.foodres.2020.110038.
Almendras, K., García, J., Carú, M., & Orlando, J. (2018). Nitrogen-fixing bacteria associated with Peltigera cyanolichens and Cladonia chlorolichens.
Molecules,
23(12), 3077. https;//doi.org/
10.3390/molecules23123077
Arnaud, J., Audfray, A., & Imberty, A. (2013). Binding sugars: from natural lectins to synthetic receptors and engineered neolectins.
Chemical Society Reviews,
42(11), 4798-4813. https;//doi.org/
10.1039/C2CS35435G.
Arnold, M. F., Penterman, J., Shabab, M., Chen, E. J., & Walker, G. C. (2018). Important late-stage symbiotic role of the Sinorhizobium meliloti exopolysaccharide succinoglycan.
Journal of bacteriology,
200(13), e00665-17. https;//doi.org/
10.1128/jb.00665-17
Beliën, T., Van Campenhout, S., Robben, J., & Volckaert, G. (2006). Microbial endoxylanases: effective weapons to breach the plant cell-wall barrier or, rather, triggers of plant defense systems?
Molecular Plant-Microbe Interactions,
19(10), 1072-1081. https;//doi.org/
10.1094/MPMI-19-1072.
Bamford, N. C., Le Mauff, F., Subramanian, A. S., Yip, P., Millán, C., Zhang, Y., & Howell, P. L. (2019). Ega3 from the fungal pathogen Aspergillus fumigatus is an endo-α-1, 4-galactosaminidase that disrupts microbial biofilms. Journal of Biological Chemistry, 294(37), 13833-13849. https;//doi.org/ 10.1074/jbc.RA119.009910
Becker, M., Becker, Y., Green, K., & Scott, B. (2016). The endophytic symbiont Epichloë festucae establishes an epiphyllous net on the surface of Lolium perenne leaves by development of an expressorium, an appressorium‐like leaf exit structure.
New Phytologist,
211(1), 240-254. https;//doi.org/
10.1111/nph.13931
Bethke, G., Grundman, R. E., Sreekanta, S., Truman, W., Katagiri, F., & Glazebrook, J. (2014). Arabidopsis Pectin Methylesterases contribute to immunity against Pseudomonas syringae.
Plant Physiology,
164(2), 1093-1107. https;//doi.org/
10.1104/pp.113.227637
Bolouri Moghaddam, M. R., & Van den Ende, W. (2013). Sweet immunity in the plant circadian regulatory network.
Journal of experimental botany,
64(6), 1439-1449. https;//doi.org/
10.1093/jxb/ert046
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
Analytical Biochemistry,
72, 248-254.
https://doi.org/10.1016/0003-2697(76)90527-3
Buchanan, M., Burton, R. A., Dhugga, K. S., Rafalski, A. J., Tingey, S.V., Shirley, N. J., & Fincher, G. B. (2012). Endo-(1, 4)-β-Glucanase gene families in the grasses: temporal and spatial co-transcription of orthologous genes1. BMC Plant Biology, 12(1), 1-19. https;//doi.org/ 10.1186/1471-2229-12-235
Chen, C., & Zhu, H. (2013). Are common symbiosis genes required for endophytic rice-rhizobial interactions.
Chinese Academy of Sciences,
8, 531- 533. https;//doi.org/
10.4161/psb.25453
Cheval, C., Samwald, S., Johnston, M.G., de Keijzer, J., Breakspear, A., Liu, X., & Faulkner, C. (2020). Chitin perception in plasmodesmata characterizes submembrane immune-signaling specificity in plants.
Proceedings of the National Academy of Sciences,
117(17), 9621-9629.
https://doi.org/10.1073/pnas.1907799117
Cocking, E. (2003). Endophytic colonization of plant roots by nitrogen-fixing bacteria, Centre for Crop Nitrogen Fixation, University of Nottingham, 252, 169–175. https;//doi.org/ 10.1023/A:1024106605806
Couto, D., & Zipfel, C. (2016). Regulation of pattern recognition receptor signalling in plants.
Nature Reviews Immunology,
16(9), 537-552. https;//doi.org/
10.1371/journal.ppat.1005811
Creus, C. M., Sueldo, R. J., & Barassi, C. A. (1997). Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiology and Biochemistry, 35, 939-944.
Davidsson, P.R., Kariola, T., Niemi, O., & Palva, E.T. (2013). Pathogenicity of and plant immunity to soft rot pectobacteria.
Frontiers in plant science,
4, 191. https;//doi.org/
10.3389/fpls.2013.00191
Denham, S. T., Verma, S., Reynolds, R. C., Worne, C. L., Daugherty, J. M., Lane, T. E., & Brown, J.C. (2018). Regulated release of cryptococcal polysaccharide drives virulence and suppresses immune cell infiltration into the central nervous system.
Infection and immunity,
86(3), e00662-17. https;//doi.org/
10.1128/IAI.00662-17
Dutta, S., & Podile, A. R. (2010). Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Critical Review in Microbiology, 36, 232-244. https;//doi.org/10.3109.10408411003766806
Ferrari, S., Savatin, D. V., Sicilia, F., Gramegna, G., Cervone, F., & Lorenzo, G. D. (2013). Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development.
Frontiers in plant science,
4, 49. https;//doi.org/
10.3389/fpls.2013.00049
Fan, Y., Yu, X., Guo, H., Wei, J., Guo, H., Zhang, L., & Zeng, F. (2020). Dynamic transcriptome analysis reveals uncharacterized complex regulatory pathway underlying dose IBA-induced embryogenic re-differentiation in cotton. International Journal of Molecular Science, 21, 426–450. https;//doi.org/
Feng, F., Sun, J., Radhakrishnan, G.V., Lee, T., Bozsóki, Z., Fort, S., & Oldroyd, G.E. (2019). A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nature Communications, 10(1), 1-12. https;//doi.org/ 10.1038/s41467-019-12999-5
Fukami, J., Ollero, F. J., Osa, C. D., Fernandez, V., Nogueira, M. A., Megaias, M., & Hungaria, M. (2018). Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense.
Archive of Microbiology.
200, 1191-1203.
https://doi.org/10.1128/mmbr.68.2.280-300.2004.
Gage, D. J. (2004). Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes.
Microbiology and Molecular Biology Reviews,
68(2), 280-300. https;//doi.org/
https://doi.org/10.1128/mmbr.68.2.280-300.2004
García de Salamone, I. E., Di Salvo, L. P., Escobar Ortega, J. S., Boa Sorte, P. M. F., Urquiaga, S., & Teixeira, K. R. S. (2010). Field response of rice paddy crop to Azospirillum inoculation: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant and Soil, 336(1–2), 351–362. https;//doi.org/ 10.1007/s11104-010-0487-y
Gureeva, M., Kirillova, M. S., Trandina, V. A., Krykova, V. A. Eremina, A., Alimova, A. A., Grabovich, M. Y., & Gureev, R. P. (2025). Effect of bacteria from the genus Azospirillum on oxidative stress levels in wheat Triticum aestivum L. in the presence of Copper, Nickel, and Lead. Microorganisms, 13(2), 334-347. https://doi.org/10.3390/microorganisms13020334
Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K., (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604-611. https;//doi.org/ 10.1007/s004250050524.
Jnawali, A. D., Ojha, R. B., & Marahatta, S. (2015). Role of Azotobacter in soil fertility and sustainability–A review. Advances in Plants and Agricultural Research, 2(6), 1–5 https;//doi.org/ 10.15406/apar.2015.02.00069
Kang, X., Kirui, A., Muszyński, A., Widanage, M. C. D., Chen, A., Azadi, P., & Wang, T. (2018). Molecular architecture of fungal cell walls revealed by solid-state NMR. Nature communications, 9(1), 1-12.
Kar, M., & Mishra, D. (1976). Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence.
Plant Physiology,
57, 315-319.
https://doi.org/10.1104/pp.57.2.315
Kutschera, A., Dawid, C., Gisch, N., Schmid, C., Raasch, L., Gerster, T., & Ranf, S. (2019). Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants.
Science,
364(6436), 178-181. https;//doi.org/
10.1126/science.aau1279
McCready, R., Guggolz, J., Silviera, V., & Owens, H. (1950) Determination of starch and amylose in vegetables, application to peas. Analytical Chemistry, 22,1156-1158.
Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.
Plant and Cell Physiology,
22, 867–80. https;//doi.org/
10.1093/oxfordjournals.pcp.a076232
Repetto, M. G., & Semprine, J. (2012). Lipid peroxidation: chemical mechanism, biological implications and analytical determination. book Chapter in book:
Lipid Peroxidation. https;//doi.org/
10.5772/45943
Reuveni, R., (1995), Biochemical marker of disease resistance, Molecular Methods in Plant Pathology, 42, 99-114.
Sagi, M., & Fluhr, R. (2006). Production of reactive oxygen species by plant NADPH oxidases.
Plant pgysiology,
141, 336-34010. https;//doi.org/
10.1104/pp.106.078089.
Schlegel, H. G. (1956). Die verwertung organischer säuren durch Chlorella im licht. Planta, 47, 510-526.
Sharifalsadat, Z., Aghdasi, M., Ghanati, F., & Arzanesh, M. (2023). Harmonized biochemical modification of cell walls to get permission for entrance of Azospirillum sp. to rice roots. Plant Science. 335, 111823. https;//doi.org/10.1016/j.plantsci.2023.111823
Sehrawat, S., Reddy, P. B., Rajasagi, N., Suryawanshi, A., Hirashima, M., & Rouse, B. T. (2010). Galectin-9/TIM-3 interaction regulates virus-specific primary and memory CD8+ T cell response.
PLoS pathogens,
6(5), e1000882. https;//doi.org/
10.1371/journal.ppat.1000882
Sergiev, I., Alexieva, V., & Karanov, E. (1997). Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Comptent Rend Academia Bulgarian Science, 51(3), 121-124. https;//doi.org/10.1046/j.1365-3040.2001.00778.x
White, J. F., Kingsley, K.L., Verma, S. K., & Kowalski, K. P. (2018). Rhizophagy cycle: an oxidative process in plants for nutrient extraction from symbiotic microbes.
Microorganisms,
6(3), 95. https;//doi.org/
10.3390/microorganisms6030095
Yoshida, S., & Cornel, V. (1976). Nitrogen nutrition, leaf resistance, and leaf photosynthetic rate of the rice plant. Soil Science and Plant Nutrition, 22(2), 207-211
Zhang, J., Hussain, S., Zhao, F., Zhu, L., Cao, X., Yu, S., & Jin, Q. (2018). Effects of Azosperillum brasilense and Pseudomonas fluorescents on nitrogen transformation and enzyme activity in the rice rhizosphere.
Journal of Soils and Sediments,
18(4), 1453-1465. https;//doi.org/
10.1007/s11368-017-1861-7