پاسخ سیستم دفاعی آنتی اکسیدان گیاه برنج در برهم‌ کنش با دو گونه از آزوسپریلوم (Azospirillum)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری، گروه زیست شناسی- فیزیولوژی گیاهی، دانشکده علوم، دانشگاه گلستان، گرگان، ایران

2 استاد، گروه زیست شناسی- فیزیولوژی گیاهی، دانشکده علوم، دانشگاه گلستان، گرگان، ایران

3 استاد، گروه بیولوژی گیاهی، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

4 استادیار، گروه تحقیقات خاک و آب، مرکز تحقیقات کشاورزی و منابع طبیعی گلستان، گرگان، ایران

10.22034/plant.2025.143111.1145

چکیده

باکتری آزوسپریلوم (Azospirillum) یکی از مهم‌ترین باکتری‌های محرک رشد گیاهان است که توانایی تثبیت نیتروژن را دارد. دراین تحقیق اثر دو گونه از باکتری‌ آزوسپریلوم به همراه تیمار هورمون‌های اکسین (IAA) و یا جیبرلین (GA3) بر فعالیت آنزیم‌های آنتی‌اکسیدان و برخی شاخص‌های بیوشیمیایی در هنگام ورود به ریشه گیاهچه‌های برنج رقم هاشمی (Oryza sativa cv. Hashemi) بررسی شد. به این منظور گیاهچه‌های برنج به مدت 21 روز در محلول یوشیدا کشت و سپس با brasilensea .A و A. irakens در حضور غلظت‌های مختلف 0, 100, 200 ppm از IAA و GA3 به تنهایی یا ترکیبی از هر دو هورمون تلقیح شدند. پس از 4 هفته تیمار؛ ریشه گیاهچه‌های برنج جمع‌آوری شده و جهت مطالعه فعالیت آنزیم‌های آنتی‌اکسیدانی و برخی فاکتورهای بیوشیمیایی مورد استفاده قرار گرفتند. آزمایش در قالب طرح کاملا تصادفی و با 4 تکرار انجام شد. نتایج حاصل نشان داد که که بیشترین میزان فعالیت سوپراکسیددیسموتاز، آسکوربات‌پراکسیداز و گایاکول‌پراکسیداز در گیاهچه‌های تلقیح‌شده با A. brasilense در تیمار ترکیبی هورمون مشاهده شد. از طرف دیگر میزان فعالیت آنزیم‌های کاتالاز، پلی‌فنل‌اکسیداز و پراکسیداز دیواره‌ای در گیاهچه‌های تلقیح‌شده با باکتری و در تیمار هورمونی نسبت به نمونه شاهد کاهش یافت. همچنین مقدار پروتئین و قند محلول و کل به طور معنی‌داری در گیاهچه‌های تیمارشده در مقایسه با شاهد افزایش پیدا کرد. به نظر می‌رسد که که سیستم آنتی‌اکسیدانی آنزیمی شرایط لازم برای ورود باکتری به اندام ریشه برنج را فراهم می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Antioxidant defense system response of rice in interaction with two Azospirillum species

نویسندگان [English]

  • Seyedeh Zeynab Sharifsadat 1
  • Mahnaz Aghdasi 2
  • Faezeh Ghanati 3
  • Mohammad Hossein Arzanesh 4
1 Ph.D, graduate, Department of Biology-Plant Physiology, Faculty of Science, Golestan University, Gorgan, Iran
2 Professor, Department of Biology-Plant Physiology, Faculty of Science, Golestan University, Gorgan, Iran
3 Professor, Department of Plant Biology, Faculty of Biological Scuience, Tarbiat Modares University, Tehran, Iran
4 Assistant Professor, Department of Soil and Water Research, Golestan Agricultural and Natural Resources Research Center, Gorgan, Iran
چکیده [English]

Azospirillum is one of the most important Plant Growth Promoting Rhizobacteria (PGPR) which has capacity to fix atmospheric nitrogen. This study was conducted to investigate the effect of two Azospirillum species inoculation with auxin (IAA) and gibberellin (GA3) treatment on the antioxidant enzymes activity and some biochemical factors during their entry into the rice (Oryza sativa var. shiroodi) roots seedlings. Rice seedlings were grown in Yoshida medium for 21 days and then were inoculated with A. brasilense and A. irakens in the presence of 0, 100, and 200 ppm of IAA or GA3 alone or a combination of both. After 4 weeks treatment, roots of seedlings was harvested and used to study the activity of antioxidants and biochemical factors. The experiment was performed in complete randomized design with 3 replications. The obtained results showed that the activity of superoxide dismutase, ascorbate peroxidase and guaiacol-peroxidase enzymes were significantly increased in seedlings which inoculated with A. brasilense in combinations with IAA plus GA3 treatment. On the other hand, the activity of catalase, poly phenol oxidase and wall peroxidase was significantly decreased after inoculating with bacteria and IAA and GA3 treatment. Meanwhile, the amount of total and soluble protein and sugar was significantly increased after inoculation with bacteria and hormones treatment, compared to control samples. It seems enzymatic antioxidant system provide necessary conditions for bacteria entry into rice root organ.

کلیدواژه‌ها [English]

  • Azospirillum
  • Auxin
  • Cell wall loosening
  • Gibberellin
  • Nitrogen fixation
Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., & Meftah Kadmiri, I. (2021). Nitrogen fixing azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Frontier in Microbiology, 12, 628379-628382. https;//doi.org/10.3389/fmicb.2021.628379.
Acosta-Jurado, S., Rodríguez-Navarro, D. N., Kawaharada, Y., Perea, J. F., Gil-Serrano, A., Jin, H., & Ruiz-Sainz, J. E. (2016). Sinorhizobium fredii HH103 invades Lotus burttii by crack entry in a Nod Factor–and surface polysaccharide–dependent manner. Molecular Plant-Microbe Interactions29(12), 925-937. https;//doi.org/ 10.1094/MPMI-09-16-0195-R.
Albersheim, P., Darvill, A., Roberts, K., Sederoff, R., & Staehelin, A. (2011). Cell walls and plant-microbe interactions. Plant cell walls: From chemistry to biology, 319-363. https://doi.org/10.1016/j.foodres.2020.110038.
Almendras, K., García, J., Carú, M., & Orlando, J. (2018). Nitrogen-fixing bacteria associated with Peltigera cyanolichens and Cladonia chlorolichens. Molecules23(12), 3077. https;//doi.org/ 10.3390/molecules23123077
Arnaud, J., Audfray, A., & Imberty, A. (2013). Binding sugars: from natural lectins to synthetic receptors and engineered neolectins. Chemical Society Reviews42(11), 4798-4813. https;//doi.org/ 10.1039/C2CS35435G.
Arnold, M. F., Penterman, J., Shabab, M., Chen, E. J., & Walker, G. C. (2018). Important late-stage symbiotic role of the Sinorhizobium meliloti exopolysaccharide succinoglycan. Journal of bacteriology200(13), e00665-17. https;//doi.org/ 10.1128/jb.00665-17
Beliën, T., Van Campenhout, S., Robben, J., & Volckaert, G. (2006). Microbial endoxylanases: effective weapons to breach the plant cell-wall barrier or, rather, triggers of plant defense systems? Molecular Plant-Microbe Interactions19(10), 1072-1081. https;//doi.org/ 10.1094/MPMI-19-1072.
Bacete, L., Melida, H., Miedes, E., & Molina, A. (2018). Plant cell wall‐mediated immunity: cell wall changes trigger disease resistance responses. The Plant Journal, 93(4), 614-636. https://doi.org/10.1016/j.foodres.2020.110038. https;//doi.org/ 10.1111/tpj.13807
Bamford, N. C., Le Mauff, F., Subramanian, A. S., Yip, P., Millán, C., Zhang, Y., & Howell, P. L. (2019). Ega3 from the fungal pathogen Aspergillus fumigatus is an endo-α-1, 4-galactosaminidase that disrupts microbial biofilms. Journal of Biological Chemistry294(37), 13833-13849. https;//doi.org/ 10.1074/jbc.RA119.009910
Becker, M., Becker, Y., Green, K., & Scott, B. (2016). The endophytic symbiont Epichloë festucae establishes an epiphyllous net on the surface of Lolium perenne leaves by development of an expressorium, an appressorium‐like leaf exit structure. New Phytologist211(1), 240-254. https;//doi.org/ 10.1111/nph.13931
Beauchamp, C., & Fridovich, H. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Annals of Biochemistry, 44(1), 276-87. https://doi.org/10.1016/0003-2697(71)90370-8
Bethke, G., Grundman, R. E., Sreekanta, S., Truman, W., Katagiri, F., & Glazebrook, J. (2014). Arabidopsis Pectin Methylesterases contribute to immunity against Pseudomonas syringae. Plant Physiology164(2), 1093-1107. https;//doi.org/ 10.1104/pp.113.227637
Bolouri Moghaddam, M. R., & Van den Ende, W. (2013). Sweet immunity in the plant circadian regulatory network. Journal of experimental botany64(6), 1439-1449. https;//doi.org/ 10.1093/jxb/ert046
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Buchanan, M., Burton, R. A., Dhugga, K. S., Rafalski, A. J., Tingey, S.V., Shirley, N. J., & Fincher, G. B. (2012). Endo-(1, 4)-β-Glucanase gene families in the grasses: temporal and spatial co-transcription of orthologous genes1. BMC Plant Biology12(1), 1-19. https;//doi.org/ 10.1186/1471-2229-12-235
Chance, B., & Maehly, A. (1955). Assay of catalase and peroxidase. Methods in Enzymology, 2, 764–817. https://doi.org/10.1016/S0076-6879(55)02300-8
Chen, C., & Zhu, H. (2013). Are common symbiosis genes required for endophytic rice-rhizobial interactions.Chinese Academy of Sciences, 8, 531- 533. https;//doi.org/ 10.4161/psb.25453
Cheval, C., Samwald, S., Johnston, M.G., de Keijzer, J., Breakspear, A., Liu, X., & Faulkner, C. (2020). Chitin perception in plasmodesmata characterizes submembrane immune-signaling specificity in plants. Proceedings of the National Academy of Sciences117(17), 9621-9629. https://doi.org/10.1073/pnas.1907799117
Cocking, E. (2003). Endophytic colonization of plant roots by nitrogen-fixing bacteria, Centre for Crop Nitrogen Fixation, University of Nottingham, 252, 169–175. https;//doi.org/ 10.1023/A:1024106605806  
Couto, D., & Zipfel, C. (2016). Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology16(9), 537-552.  https;//doi.org/ 10.1371/journal.ppat.1005811 
Creus, C. M., Sueldo, R. J., & Barassi, C. A. (1997). Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiology and Biochemistry35, 939-944.
Davidsson, P.R., Kariola, T., Niemi, O., & Palva, E.T. (2013). Pathogenicity of and plant immunity to soft rot pectobacteria. Frontiers in plant science4, 191. https;//doi.org/10.3389/fpls.2013.00191
Denham, S. T., Verma, S., Reynolds, R. C., Worne, C. L., Daugherty, J. M., Lane, T. E., & Brown, J.C. (2018). Regulated release of cryptococcal polysaccharide drives virulence and suppresses immune cell infiltration into the central nervous system. Infection and immunity86(3), e00662-17. https;//doi.org/ 10.1128/IAI.00662-17
Dutta, S., & Podile, A. R. (2010). Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Critical Review in Microbiology, 36, 232-244. https;//doi.org/10.3109.10408411003766806
Ferrari, S., Savatin, D. V., Sicilia, F., Gramegna, G., Cervone, F., & Lorenzo, G. D. (2013). Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Frontiers in plant science4, 49. https;//doi.org/ 10.3389/fpls.2013.00049
Fan, Y., Yu, X., Guo, H., Wei, J., Guo, H., Zhang, L., & Zeng, F. (2020). Dynamic transcriptome analysis reveals uncharacterized complex regulatory pathway underlying dose IBA-induced embryogenic re-differentiation in cotton. International Journal of Molecular Science, 21, 426–450. https;//doi.org/
Feng, F., Sun, J., Radhakrishnan, G.V., Lee, T., Bozsóki, Z., Fort, S., & Oldroyd, G.E. (2019). A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nature Communications10(1), 1-12. https;//doi.org/ 10.1038/s41467-019-12999-5
 Fukami, J., Ollero, F. J., Osa, C. D., Fernandez, V., Nogueira, M. A., Megaias, M., & Hungaria, M. (2018). Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense. Archive of Microbiology. 200, 1191-1203. https://doi.org/10.1128/mmbr.68.2.280-300.2004.
Gage, D. J. (2004). Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiology and Molecular Biology Reviews68(2), 280-300. https;//doi.org/ https://doi.org/10.1128/mmbr.68.2.280-300.2004
García de Salamone, I. E., Di Salvo, L. P., Escobar Ortega, J. S., Boa Sorte, P. M. F., Urquiaga, S., & Teixeira, K. R. S. (2010). Field response of rice paddy crop to Azospirillum inoculation: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant and Soil, 336(1–2), 351–362. https;//doi.org/ 10.1007/s11104-010-0487-y
Gow, N. A. R., Latge, J. P., & Munro, C. A. (2017). The fungal cell wall: structure, biosynthesis, and function. Microbiology Spectrum5,10.1128-101135. https://doi.org/10.1128/microbiolspec.funk-0035-2016
Gureeva, M., Kirillova, M. S., Trandina, V. A., Krykova, V. A. Eremina, A., Alimova, A. A., Grabovich, M. Y., & Gureev, R. P. (2025). Effect of bacteria from the genus Azospirillum on oxidative stress levels in wheat Triticum aestivum L. in the presence of Copper, Nickel, and Lead. Microorganisms13(2), 334-347. https://doi.org/10.3390/microorganisms13020334
Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K., (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta207, 604-611. https;//doi.org/ 10.1007/s004250050524.
Jnawali, A. D., Ojha, R. B., & Marahatta, S.  (2015). Role of Azotobacter in soil fertility and sustainability–A review. Advances in Plants and Agricultural Research, 2(6), 1–5 https;//doi.org/ 10.15406/apar.2015.02.00069
Kang, X., Kirui, A., Muszyński, A., Widanage, M. C. D., Chen, A., Azadi, P., & Wang, T. (2018). Molecular architecture of fungal cell walls revealed by solid-state NMR. Nature communications9(1), 1-12.
Kar, M., & Mishra, D. (1976). Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology57, 315-319. https://doi.org/10.1104/pp.57.2.315
Kutschera, A., Dawid, C., Gisch, N., Schmid, C., Raasch, L., Gerster, T., & Ranf, S. (2019). Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants. Science364(6436), 178-181. https;//doi.org/  10.1126/science.aau1279
McCready, R., Guggolz, J., Silviera, V., & Owens, H. (1950) Determination of starch and amylose in vegetables, application to peas. Analytical Chemistry, 22,1156-1158.
Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867–80. https;//doi.org/ 10.1093/oxfordjournals.pcp.a076232
Omokolo, N. D., Boudjeko, T., & Whitehead, C. S. (2005). Comparative analyses of alterations in carbohydrates, amino acids, phenols and lignin in roots of three cultivars of Xanthosoma sagittifolium infected by Pythium myriotylum. South African Journal of Botany, 71, 432-440. https://doi.org/10.1016/S0254-6299(15)30116-2
Repetto, M. G., & Semprine, J. (2012). Lipid peroxidation: chemical mechanism, biological implications and analytical determination. book Chapter in book: Lipid Peroxidation. https;//doi.org/ 10.5772/45943
Reuveni, R., (1995), Biochemical marker of disease resistance, Molecular Methods in Plant Pathology, 42, 99-114.
Sagi, M., & Fluhr, R. (2006). Production of reactive oxygen species by plant NADPH oxidases. Plant pgysiology, 141, 336-34010. https;//doi.org/ 10.1104/pp.106.078089.
Schlegel, H. G. (1956). Die verwertung organischer säuren durch Chlorella im licht. Planta47, 510-526.
Sharifalsadat, Z., Aghdasi, M., Ghanati, F., & Arzanesh, M. (2023). Harmonized biochemical modification of cell walls to get permission for entrance of Azospirillum sp. to rice roots. Plant Science. 335, 111823. https;//doi.org/10.1016/j.plantsci.2023.111823
Sehrawat, S., Reddy, P. B., Rajasagi, N., Suryawanshi, A., Hirashima, M., & Rouse, B. T. (2010). Galectin-9/TIM-3 interaction regulates virus-specific primary and memory CD8+ T cell response. PLoS pathogens6(5), e1000882. https;//doi.org/10.1371/journal.ppat.1000882
Sergiev, I., Alexieva, V., & Karanov, E. (1997). Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Comptent Rend Academia Bulgarian Science51(3), 121-124. https;//doi.org/10.1046/j.1365-3040.2001.00778.x
White, J. F., Kingsley, K.L., Verma, S. K., & Kowalski, K. P. (2018). Rhizophagy cycle: an oxidative process in plants for nutrient extraction from symbiotic microbes. Microorganisms6(3), 95. https;//doi.org/  10.3390/microorganisms6030095
Yoshida, S., & Cornel, V. (1976). Nitrogen nutrition, leaf resistance, and leaf photosynthetic rate of the rice plant. Soil Science and Plant Nutrition, 22(2), 207-211
Zhang, J., Hussain, S., Zhao, F., Zhu, L., Cao, X., Yu, S., & Jin, Q. (2018). Effects of Azosperillum brasilense and Pseudomonas fluorescents on nitrogen transformation and enzyme activity in the rice rhizosphere. Journal of Soils and Sediments, 18(4), 1453-1465. https;//doi.org/10.1007/s11368-017-1861-7