Abedini, S., Pourseyedi, S., Zolala, J., Mohammadi, H., & Abdolshahi, R. (2024). Green synthesis of Superparamagnetic Iron oxide and silver nanoparticles in satureja hortensis leave extract: Evaluation of Antifungal Effects on Botryosphaeriaceae Species. Current Microbiology, 81(6), 149. https://doi.org/10.1007/s00284-024-03647-3
Adabavazeh, F., Nadernejad, N., Pourseyedi, S., Razavizadeh, R., & Mozafari, H. (2022). Synthesis of magnetic nanoparticles and their effects on growth and physiological parameters of Calotropis procera seedlings. Environmental Science and Pollution Research, 29(39), 59027-59042. https://doi.org/10.1007/s11356-022-19660-7
Adabavazeh, F., Nadernejad, N., & Pourseyedi, Sh., (2001). Study of the effects of synthesized iron nanoparticle and salicylic acid on change of physiological characteristics and essential oil contents of Calotropis procera hairy roots and seedlings. Faculty of Science, Department of Biology, Shahid Bahonar University of Kerman, Kerman, Iran.
Adabavazeh, F., Pourseyedi, S., Nadernejad, N., & Razavizadeh, R. (2023). Hairy root induction in Calotropis procera and optimization of its phytochemical characteristics by elicitors. Plant Cell, Tissue and Organ Culture (PCTOC), 155(2), 567-580. https://doi.org/10.1007/s11240-023-02481-y
Cui, J., Li, Y., Jin, Q., & Li, F. (2020). Silica nanoparticles inhibit arsenic uptake into rice suspension cells via improving pectin synthesis and the mechanical force of the cell wall. Environmental Science: Nano 7, 162–171. https://doi.org/10.1039/c9en01035a
de França Bettencourt, G. M., Degenhardt, J., Torres, L. A. Z., de Andrade Tanobe, V. O., & Soccol, C. R. (2020). Green biosynthesis of single and bimetallic nanoparticles of iron and manganese using bacterial auxin complex to act as plant bio-fertilizer. Biocatalysis and Agricultural Biotechnology, 30, 101822. https://doi.org/10.1016/j.bcab.2020.101822
Dimkpa, C. O., White, J. C., Elmer, W. H., & Gardea-Torresdey, J. (2017). Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. Journal of agricultural and food chemistry, 65(39), 8552-8559. https://doi.org/10.1021/acs.jafc.7b02961
Esnaashari, E., & enteshari, S. (2018). Effects of iron chloride, iron chelate and nano-iron on enzymatic and non-enzymatic antioxidant mechanisms in Melissa officinalis Under Aluminum treatment. Plant Process and Function, 7 (23), 193-204. (In Persian) https://doi.org/10.1026/ppf.jafc.7b02961
Fryzova, R., Pohanka, M., Martinkova, P., Cihlarova, H., Brtnicky, M., Hladky, J., & Kynicky, J. (2018). Oxidative stress and heavy metals in plants. Reviews of Environmental Contamination and Toxicology, 245, 129-156. https://doi.org/10.1007/398_2017_7
García-Ovando, A. E., Piña, J. E. R., Naranjo, E. U. E., Chávez, J. A. C., & Esquivel, K. (2022). Biosynthesized nanoparticles and implications by their use in crops: Effects over physiology, action mechanisms, plant stress responses and toxicity. Plant Stress, 6, 100109. https://doi.org/10.1016/j.stress.2022.100109
Gerami, M., Majidian, P. , Ghorbanpour, A., & Barati, N. (2021). Response of Aloysia citriodora L. to treatments of titanium dioxide nanoparticle and salt stress. Environmental Stresses in Crop Sciences, 14(2), 557-567. https://doi.org/10.22077/escs.2020.2935.1755
Golkari, S., Pourseyedi, S., Kazemipour, A., & Mansouri, M. (2023). The effect of magnetic iron oxide nanoparticles and ferric chloride on the expression of some rosmarinic acid biosynthetic genes in Melissa officinalis L. Agriculture Biotechnology Journal, 15(1). fa235-fa254. https://doi.org/10.22103/jab.2023.20035.1420
Gülser, F., & Arzu, Ç. I. Ğ. (2020). Tolerance of hyacinth (Hyacinthus orientalis L. cv “Blue Star”) to lead contaminated media. ISPEC Journal of Agricultural Sciences, 4(1), 97-104. https://doi.org/10.46291/ISPECJASvol4iss1pp97-104
Haghighi, M., & Kafi, M. (2014). The effect of cadmium toxicity on changes of proline and antioxidant in lettuce. Journal Of Horticultural Science, 27(4), 359-366. (In Persian) https://doi.org/10.22067/jhorts4.v0i0.30529
Hasan, M. K., Cheng, Y., Kanwar, M. K., Chu, X. Y., Ahammed, G. J., & Qi, Z. Y. (2017). Responses of plant proteins to heavy metal stress—a review. Frontiers in plant science, 8, 1492. https://doi.org/10.3389/fpls.2017.01492
Irshad, M. A., Nawaz, R., ur Rehman, M. Z., Wijaya, L., Shakoor, M. B., Ahmad, S., Inaam, A., Razzaq, A., Rizwan, M., & Ali, S. (2021). Effect of green and chemically synthesized titanium dioxide nanoparticlesnon cadmium accumulation in wheat grains and potential dietary health risk: A field investigation. Journal of Hazardous Materials, 415, 1- 9. https://doi.org/10.1007/s11240-023-02481-y
Jalili Marandi, R. (2009). Physiology of environmental stresses and resistance mechanisms in horticultural plants. West Azarbayejan, Iran. Urmia University Jihad of Press. (In persian)
Jamali‐Behnam, F., Najafpoor, A. A., Davoudi, M., Rohani‐Bastami, T., Alidadi, H., Esmaily, H., & Dolatabadi, M. (2018). Adsorptive removal of arsenic from aqueous solutions using magnetite nanoparticles and silica‐coated magnetite nanoparticles. Environmental Progress & Sustainable Energy, 37(3), 951-960. https://doi.org/10.1002/ep.12751
Khan, Z. U. H., Latif, S., Abdulaziz, F., Shah, N. S., Imran, M., Muhammad, N., ... & Khan, H. U. (2022). Photocatalytic response in water pollutants with addition of biomedical and anti-leishmanial study of iron oxide nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 234, 112544. https://doi.org/10.1007/s40010-017-0391-4
Liu, J., Zhou, Q., & Wang, S. (2010). Evaluation of chemical enhancement on phytoremediation effect of Cd-contaminated soils with Calendula officinalis L. International journal of phytoremediation, 12(5), 503-515. https://doi.org/10.1080/15226510903353112
Mahanty, S., Chatterjee, S., Ghosh, S., Tudu, P., Gaine, T., Bakshi, M., Das, S., Das, P., Bhattacharyya, S., Bandyopadhyay, S., & Chaudhuri, P. (2020). Synergistic approach towards the sustainable management of heavy metals in wastewater using mycosynthesized iron oxide nanoparticles: biofabrication, adsorptive dynamics and chemometric modeling study. Journal of Water Process Engineering, 37, 101426. https://doi.org/10.1016/j.jwpe.2020.101426
Mahdi Nezhad, N., Mousavi, H., Fakheri, B., & Heidari, F. (2019). The assessment of the effects of the nanoparticles on some physiological traits changes, photosynthetic pigments and the prthenolide of chamomile plant (Tanacetum parthenium) under Water dificit stress. Plant Process and Function, 8 (29), 219-227. (In Persian) https://doi.org/10.1026/ppf.jafc.7b02966
Mazaheri Tirani, M., Madadkar Haghjou, M., & Ismaili, A. 2019. Hydroponic grown tobacco plants respond to zinc oxide nanoparticles and bulk exposures by morphological, physiological and anatomical adjustments.
Functional Plant Biology.
https://doi.org/10.1071/FP18076
Mohapatra, J., Mitra, A., Tyagi, H., Bahadur, D., & Aslam, M. (2015). Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents. Nanoscale, 7(20), 9174-9184. https://doi.org/10.1039/C5NR00055F
Mounier, L., Pédrot, M., Bouhnik-Le-Coz, M., & Cabello-Hurtado, F. (2023). Impact of iron oxide nanoparticles on a lead-polluted water–soil–plant system under alternating periods of water stress. Environmental Science: Advances, 2(5), 767-779. https://doi.org/10.1039/D2VA00283C
Ndou, N., Rakgotho, T., Nkuna, M., Doumbia, I. Z., Mulaudzi, T., & Ajayi, R. F. (2023). Green synthesis of iron oxide (hematite) nanoparticles and their influence on Sorghum bicolor growth under drought stress. Plants, 12(7), 1425. https://doi.org/10.3390/plants12071425
Pourghasemia, N., & Moradi, R. (2018). Potential of using beeswax waste as the substrate for borage (Borago officinalis) planting in different irrigation regimes. Journal of Plant Process and Function, 7(23), 163-178. (In Persian) https://doi.org/10.1026/ppf.jafc.7b02966
Pourghasemian, N., Moradi, R., Naghizadeh, M., & Landberg, T. (2020). Mitigating drought stress in sesame by foliar application of salicylic acid, beeswax waste and licorice extract. Agricultural Water Management, 231, 105997. https://doi.org/10.1016/j.agwat.2019.105997
Ranjbar, M., Esmaili, S., & Moshtaghi, A. A. (2020). Lead and nickel effect on some physiological and biochemical characteristics of (Anethum graveolens L.). Journal of Plant Biological Sciences, 12(2), 1-22. doi: 10.22108/ijpb.2020.117860.1158
Rawat, S., & Singh, J. (2021). Green synthesis of iron nanoparticles using Plumeria and Jatropha: characterization and investigation of their adsorption, regeneration and catalytic degradation efficiencies.
BioNanoScience,
11(4), 1142-1153.
https://doi.org/10.1007/s40010-017-0391-4
Rizwan, M., Ali, S., ur Rehman, M. Z., Riaz, M., Adrees, M., Hussain, A., ... & Rinklebe, J. (2021). Effects of nanoparticles on trace element uptake and toxicity in plants: A review. Ecotoxicology and Environmental Safety, 221, 112437. https://doi.org/10.1016/j.jbiotec.2020.09.003
Saadony, M. T., ALmoshadak, A. S., Shafi, M. E., Albaqami, N. M., Saad, A. M., El-Tahan, A. M., et al. (2021). Vital roles of sustainable nano-fertilizers in improving plant quality and quantity-an updated review Saudi Saudi Journal of Biological Sciences, 28, 7349–7359. https://doi.org/10.1016/j.foodres.2020.110038
Samani, M., Ahlawat, Y. K., Golchin, A., Alikhani, H. A., Baybordi, A., Mishra, S., & Şimşek, Ö. (2024). Nano silica’s role in regulating heavy metal uptake in Calendula officinalis. BMC Plant Biology, 24(1), 598. https://doi.org/10.1186/s12870-024-05311-1
Sebastian, A., Nangia, A., & Prasad, M. N. V. (2018). Green Synthesis of Iron Nanoparticles from Selected Plant Materials of Peninsular India. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 88, 195-203. https://doi.org/10.1007/s40010-017-0391-4
Shahzad, R., Harlina, P. W., Khan, S. U., Koerniati, S., Hastilestari, B. R., Ningrum, R. A., Wahab, R., Djalovic, I., & Prasad, P. V. (2024). Iron oxide nanoparticles alleviate salt-alkaline stress and improve growth by modulating antioxidant defense system in cherry tomato. Journal of Plant Interactions, 19(1), 2375508. https://doi.org/10.1080/17429145.2024.2375508
Sharma, B., Tiwari, S., Kumawat, K. C., & Cardinale, M. (2023). Nano-biofertilizers as bio-emerging strategies for sustainable agriculture development: Potentiality and their limitations. Science of The Total Environment, 860, 160476. https://doi.org/10.1007/s40726-023-00290-7
Sheikhbahaei, N., Rezanejad, F., & Arvin, S. M. J. (2020). Mozafati date as a potential treasure of calcium and antioxidant compounds: assessment of these phytochemicals during development. Journal of Food Measurement and Characterization, 14(3), 1273-1285. https://doi.org/10.1007/s11694-020-00375-7
Siddiqui, M. H., Al Whaibi, M. H., Faisal, M., & Al Sahli, A. A. (2014). Nano silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environmental Toxicology and Chemistry. 33, 2429–2437. https://doi.org/10.1002/etc.2697
Tombuloglu, H., Slimani, Y., Akhtar, S., Alsaeed, M., Tombuloglu, G., Almessiere, M. A., ... & Ercan, I. (2022). The size of iron oxide nanoparticles determines their translocation and effects on iron and mineral nutrition of pumpkin (Cucurbita maxima L.). Journal of Magnetism and Magnetic Materials, 564, 170058. https://doi.org/10.1007/s40010-017-0391-4
Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., & Rehman, H. (2020). Nanotechnology in agriculture: current status, challenges and future opportunities. Science of the Total Environment. 721:137778. https://doi.org/10.1016/j.scitotenv. 2020.137778
Venugopal, R., Dhanyaprabha, K. C., Thomas, H., & Sini, R. (2020). Optical characterisation of cadmium doped Fe3O4 ferrofluids by co-precipitation method. Materials Today: Proceedings, 25, A1-A5. https://doi.org/10.1016/j.matpr.2020.03.142
Win, T. T., Khan, S., Bo, B., Zada, S., & Fu, P. (2021). Green synthesis and characterization of Fe3O4 nanoparticles using Chlorella-K01 extract for potential enhancement of plant growth stimulating and antifungal activity. Scientific Reports, 11(1), 21996. https://doi.org/10.1038/s41598-021-01538-2
Winiarczyk, K., Gac, W., Góral-Kowalczyk, M., & Surowiec, Z. (2021). Magnetic properties of iron oxide nanoparticles with a DMSA-modified surface. Hyperfine Interactions, 242(48), 1-13. https://doi.org/10.1007/s10751-021-01768-w
Yang, X., Alidoust, D., & Wang, C. (2020). Effects of iron oxide nanoparticles on the mineral composition and growth of soybean (
Glycine max L.) plants.
Acta Physiologiae Plantarum,
42(8), 1-11.
https://doi.org/10.1007/s40010-017-0391-4
Zhang, J., Lin, S., Han, M., Su, Q., Xia, L., & Hui, Z. (2020). Adsorption properties of magnetic magnetite nanoparticle for coexistent Cr (VI) and Cu (II) in mixed solution.
Water,
12(2), 446.
https://doi.org/10.3390/w12020446