بررسی امکان سنتز سبز نانوذرات آهن مغناطیسی توسط تفاله موم زنبور عسل و تاثیر آن بر همیشه بهار تحت تنش سرب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار،گروه تولیدات گیاهی، دانشکده کشاورزی بردسیر، دانشگاه شهید باهنر کرمان، کرمان، ایران

2 گروه پژوهشی کشت وفرآوری زعفران و گل محمدی، دانشگاه شهیدباهنر کرمان، کرمان، ایران

3 دانش‌آموخته دکتری، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

4 دانشیار، گروه تولیدات گیاهی، دانشگاه تربت حیدریه، تربت حیدریه، ایران

10.22034/plant.2025.143673.1160

چکیده

پژوهش حاضر به منظور بررسی امکان سنتز سبز نانوذرات اکسید آهن مغناطیسی (IONPs) در حضور عصاره آبی و اتانولی تفاله موم زنبور عسل (Beeswax waste, Bw) به عنوان یکی از ضایعات کشاورزی و ارزیابی تاثیر نانوذرات IONPs سنتز شده به واسطه Bw (Bw-IONPs) در مقایسه با نانوذرات شیمیایی (Ch-IONPs) بر گیاه همیشه بهار در شرایط تنش سرب طراحی و اجرا شد. در ادامه مطالعه، آزمایش به صورت فاکتوریل در قالب طرح کاملا تصادفی در محیط هیدروپونیک انجام شد. تیمارهای آزمایش شامل دو سطح سرب (صفر و 300 میلی‌گرم در لیتر) و سه شکل مختلف آهن ( سولفات آهن به عنوان شاهد، Bw-IONPs، Ch-IONPs) در سه تکرار بود. نتایج نشان داد، وزن خشک بخش هوایی، ریشه، کلروفیلa، کلروفیل کل و پروتئین تحت تنش سرب به ترتیب حدود 46، 41، 44، 33 و 15 درصد کاهش و با مصرف نانوذرات، مخصوصا نانوذره Bw-IONPs به ترتیب حدود 20، 6، 39، 27 و 14 درصد افزایش یافتند. بااینحال فنل، فلاونوئید و آنتوسیانین در شرایط تنش سرب، افزایش یافتند و با مصرف آهن به شکل نانوذره مخصوصا نانو ذره Bw-IONPs، افزایش بیشتری نشان دادند. ترکیبات فوق، در نقش آنتی‌اکسیدانی برای گیاه ظاهر شدند. برتری نانوذره Bw-IONPs نسبت به بقیه اشکال آهن در شرایط تنش می‌تواند بیانگر امکان استفاده از نانوذرات سنتز شده به روش سبز در توسعه روش‌های کشاورزی پایدار و حفاظت از منابع طبیعی بوده و راهکارهای جدیدی برای مقابله با مشکلات ناشی از آلودگی خاک و تنش‌های زیست محیطی ارائه دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the potential of green synthesis of magnetic iron nanoparticles using beeswax waste and its Impact on marigold under lead stress

نویسندگان [English]

  • Nosaybe Pourghasemian 1 2
  • Sara Abedini 3
  • Rooholla moradi 4
1 Associate Professor, Department of Plant Production , Agricultural Faculty of Bardsir, Shahid Bahonar University of Kerman, Kerman, Iran
2 Research group cultivation and processing of saffron and damask rose, Shahid Bahonar University, Kerman, Iran
3 Ph.D. graduate, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
4 Associate Professor, Department of Plant Productions, University of Torbat Heydarieh, Torbat Heydarieh, Iran
چکیده [English]

The present study was designed and implemented to investigate the possibility of green synthesis of magnetic iron oxide nanoparticles (IONPs) in the presence of aqueous and ethanolic extracts of beeswax waste (Beeswax waste, Bw) as an agricultural waste and to evaluate the effect of IONPs nanoparticles synthesized by Bw (Bw-IONPs) compared to chemical nanoparticles (Ch-IONPs) on marigold plant under lead stress conditions. In the following study, the experiment was conducted as a factorial experiment in a completely randomized design in a hydroponic environment. The experimental treatments included two levels of lead (0 and 300 mg/L) and three different forms of iron (ferrous sulfate as control, Bw-IONPs, Ch-IONPs) in three replications. The results showed that the dry weight of the shoot, root, chlorophyll a, total chlorophyll and protein decreased by about 46, 41, 44, 33 and 15 percent under lead stress, respectively, and increased by about 20, 6, 39, 27 and 14 percent with the use of nanoparticles, especially Bw-IONPs nanoparticles, respectively. However, phenol, flavonoid and anthocyanin increased under lead stress conditions and showed a further increase with the use of iron in the form of nanoparticles, especially Bw-IONPs nanoparticles. The above compounds appeared to act as antioxidants for the plant. The superiority of Bw-IONPs nanoparticles over other forms of iron under stress conditions may indicate the possibility of using nanoparticles synthesized by green methods in the development of sustainable agricultural methods and protection of natural resources and provide new solutions to deal with problems caused by soil pollution and environmentalt

کلیدواژه‌ها [English]

  • Anthocyanins
  • Flavonoid
  • Heavy metal
  • Hydroponic
  • Nanoparticle
Abedini, S., Pourseyedi, S., Zolala, J., Mohammadi, H., & Abdolshahi, R. (2024). Green synthesis of Superparamagnetic Iron oxide and silver nanoparticles in satureja hortensis leave extract: Evaluation of Antifungal Effects on Botryosphaeriaceae Species. Current Microbiology81(6), 149. https://doi.org/10.1007/s00284-024-03647-3
Adabavazeh, F., Nadernejad, N., Pourseyedi, S., Razavizadeh, R., & Mozafari, H. (2022). Synthesis of magnetic nanoparticles and their effects on growth and physiological parameters of Calotropis procera seedlings. Environmental Science and Pollution Research29(39), 59027-59042. https://doi.org/10.1007/s11356-022-19660-7
Adabavazeh, F., Nadernejad, N., & Pourseyedi, Sh., (2001). Study of the effects of synthesized iron nanoparticle and salicylic acid on change of physiological characteristics and essential oil contents of Calotropis procera hairy roots and seedlings. Faculty of Science, Department of Biology, Shahid Bahonar University of Kerman, Kerman, Iran.
Adabavazeh, F., Pourseyedi, S., Nadernejad, N., & Razavizadeh, R. (2023). Hairy root induction in Calotropis procera and optimization of its phytochemical characteristics by elicitors. Plant Cell, Tissue and Organ Culture (PCTOC)155(2), 567-580. https://doi.org/10.1007/s11240-023-02481-y
Cui, J., Li, Y., Jin, Q., & Li, F. (2020). Silica nanoparticles inhibit arsenic uptake into rice suspension cells via improving pectin synthesis and the mechanical force of the cell wall. Environmental Science: Nano 7, 162–171. https://doi.org/10.1039/c9en01035a
de França Bettencourt, G. M., Degenhardt, J., Torres, L. A. Z., de Andrade Tanobe, V. O., & Soccol, C. R. (2020). Green biosynthesis of single and bimetallic nanoparticles of iron and manganese using bacterial auxin complex to act as plant bio-fertilizer. Biocatalysis and Agricultural Biotechnology30, 101822. https://doi.org/10.1016/j.bcab.2020.101822
Dimkpa, C. O., White, J. C., Elmer, W. H., & Gardea-Torresdey, J. (2017). Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. Journal of agricultural and food chemistry65(39), 8552-8559. https://doi.org/10.1021/acs.jafc.7b02961
Esnaashari, E., & enteshari, S. (2018). Effects of iron chloride, iron chelate and nano-iron on enzymatic and non-enzymatic antioxidant mechanisms in Melissa officinalis Under Aluminum treatment. Plant Process and Function, 7 (23), 193-204. (In Persian) https://doi.org/10.1026/ppf.jafc.7b02961
Fryzova, R., Pohanka, M., Martinkova, P., Cihlarova, H., Brtnicky, M., Hladky, J., & Kynicky, J. (2018). Oxidative stress and heavy metals in plants. Reviews of Environmental Contamination and Toxicology, 245, 129-156. https://doi.org/10.1007/398_2017_7
García-Ovando, A. E., Piña, J. E. R., Naranjo, E. U. E., Chávez, J. A. C., & Esquivel, K. (2022). Biosynthesized nanoparticles and implications by their use in crops: Effects over physiology, action mechanisms, plant stress responses and toxicity. Plant Stress, 6, 100109. https://doi.org/10.1016/j.stress.2022.100109
Gerami, M., Majidian, P. , Ghorbanpour, A., & Barati, N. (2021). Response of Aloysia citriodora L. to treatments of titanium dioxide nanoparticle and salt stress. Environmental Stresses in Crop Sciences, 14(2), 557-567. https://doi.org/10.22077/escs.2020.2935.1755
Golkari, S., Pourseyedi, S., Kazemipour, A., & Mansouri, M. (2023). The effect of magnetic iron oxide nanoparticles and ferric chloride on the expression of some rosmarinic acid biosynthetic genes in Melissa officinalis L. Agriculture Biotechnology Journal, 15(1). fa235-fa254. https://doi.org/10.22103/jab.2023.20035.1420
Gülser, F., & Arzu, Ç. I. Ğ. (2020). Tolerance of hyacinth (Hyacinthus orientalis L. cv “Blue Star”) to lead contaminated media. ISPEC Journal of Agricultural Sciences, 4(1), 97-104. https://doi.org/10.46291/ISPECJASvol4iss1pp97-104
Haghighi, M., & Kafi, M. (2014). The effect of cadmium toxicity on changes of proline and antioxidant in lettuce. Journal Of Horticultural Science27(4), 359-366. (In Persian) https://doi.org/10.22067/jhorts4.v0i0.30529
Hasan, M. K., Cheng, Y., Kanwar, M. K., Chu, X. Y., Ahammed, G. J., & Qi, Z. Y. (2017). Responses of plant proteins to heavy metal stress—a review. Frontiers in plant science, 8, 1492. https://doi.org/10.3389/fpls.2017.01492
Irshad, M. A., Nawaz, R., ur Rehman, M. Z., Wijaya, L., Shakoor, M. B., Ahmad, S., Inaam, A., Razzaq, A., Rizwan, M., & Ali, S. (2021). Effect of green and chemically synthesized titanium dioxide nanoparticlesnon cadmium accumulation in wheat grains and potential dietary health risk: A field investigation. Journal of Hazardous Materials, 415, 1- 9. https://doi.org/10.1007/s11240-023-02481-y
Jalili Marandi, R. (2009). Physiology of environmental stresses and resistance mechanisms in horticultural plants. West Azarbayejan, Iran. Urmia University Jihad of Press. (In persian)
Jamali‐Behnam, F., Najafpoor, A. A., Davoudi, M., Rohani‐Bastami, T., Alidadi, H., Esmaily, H., & Dolatabadi, M. (2018). Adsorptive removal of arsenic from aqueous solutions using magnetite nanoparticles and silica‐coated magnetite nanoparticles. Environmental Progress & Sustainable Energy37(3), 951-960. https://doi.org/10.1002/ep.12751
Khan, Z. U. H., Latif, S., Abdulaziz, F., Shah, N. S., Imran, M., Muhammad, N., ... & Khan, H. U. (2022). Photocatalytic response in water pollutants with addition of biomedical and anti-leishmanial study of iron oxide nanoparticles. Journal of Photochemistry and Photobiology B: Biology234, 112544. https://doi.org/10.1007/s40010-017-0391-4
Liu, J., Zhou, Q., & Wang, S. (2010). Evaluation of chemical enhancement on phytoremediation effect of Cd-contaminated soils with Calendula officinalis L. International journal of phytoremediation, 12(5), 503-515. https://doi.org/10.1080/15226510903353112
Mahanty, S., Chatterjee, S., Ghosh, S., Tudu, P., Gaine, T., Bakshi, M., Das, S., Das, P., Bhattacharyya, S., Bandyopadhyay, S., & Chaudhuri, P. (2020). Synergistic approach towards the sustainable management of heavy metals in wastewater using mycosynthesized iron oxide nanoparticles: biofabrication, adsorptive dynamics and chemometric modeling study. Journal of Water Process Engineering, 37, 101426. https://doi.org/10.1016/j.jwpe.2020.101426
Mahdi Nezhad, N., Mousavi, H., Fakheri, B., & Heidari, F. (2019). The assessment of the effects of the nanoparticles on some physiological traits changes, photosynthetic pigments and the prthenolide of chamomile plant (Tanacetum parthenium) under Water dificit stress. Plant Process and Function, 8 (29), 219-227. (In Persian) https://doi.org/10.1026/ppf.jafc.7b02966
Mazaheri Tirani, M., Madadkar Haghjou, M., & Ismaili, A. 2019. Hydroponic grown tobacco plants respond to zinc oxide nanoparticles and bulk exposures by morphological, physiological and anatomical adjustments. Functional Plant Biology. https://doi.org/10.1071/FP18076
Mohapatra, J., Mitra, A., Tyagi, H., Bahadur, D., & Aslam, M. (2015). Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents. Nanoscale7(20), 9174-9184. https://doi.org/10.1039/C5NR00055F
Mounier, L., Pédrot, M., Bouhnik-Le-Coz, M., & Cabello-Hurtado, F. (2023). Impact of iron oxide nanoparticles on a lead-polluted water–soil–plant system under alternating periods of water stress. Environmental Science: Advances2(5), 767-779. https://doi.org/10.1039/D2VA00283C
Ndou, N., Rakgotho, T., Nkuna, M., Doumbia, I. Z., Mulaudzi, T., & Ajayi, R. F. (2023). Green synthesis of iron oxide (hematite) nanoparticles and their influence on Sorghum bicolor growth under drought stress. Plants12(7), 1425. https://doi.org/10.3390/plants12071425
Pourghasemia, N., & Moradi, R. (2018). Potential of using beeswax waste as the substrate for borage (Borago officinalis) planting in different irrigation regimes. Journal of Plant Process and Function7(23), 163-178. (In Persian) https://doi.org/10.1026/ppf.jafc.7b02966
Pourghasemian, N., Moradi, R., Naghizadeh, M., & Landberg, T. (2020). Mitigating drought stress in sesame by foliar application of salicylic acid, beeswax waste and licorice extract. Agricultural Water Management, 231, 105997. https://doi.org/10.1016/j.agwat.2019.105997
Ranjbar, M., Esmaili, S., & Moshtaghi, A. A. (2020). Lead and nickel effect on some physiological and biochemical characteristics of (Anethum graveolens L.). Journal of Plant Biological Sciences, 12(2), 1-22. doi: 10.22108/ijpb.2020.117860.1158
Rawat, S., & Singh, J. (2021). Green synthesis of iron nanoparticles using Plumeria and Jatropha: characterization and investigation of their adsorption, regeneration and catalytic degradation efficiencies. BioNanoScience11(4), 1142-1153. https://doi.org/10.1007/s40010-017-0391-4
Rizwan, M., Ali, S., ur Rehman, M. Z., Riaz, M., Adrees, M., Hussain, A., ... & Rinklebe, J. (2021). Effects of nanoparticles on trace element uptake and toxicity in plants: A review. Ecotoxicology and Environmental Safety221, 112437. https://doi.org/10.1016/j.jbiotec.2020.09.003
Saadony, M. T., ALmoshadak, A. S., Shafi, M. E., Albaqami, N. M., Saad, A. M., El-Tahan, A. M., et al. (2021). Vital roles of sustainable nano-fertilizers in improving plant quality and quantity-an updated review Saudi Saudi Journal of Biological Sciences, 28, 7349–7359. https://doi.org/10.1016/j.foodres.2020.110038
Samani, M., Ahlawat, Y. K., Golchin, A., Alikhani, H. A., Baybordi, A., Mishra, S., & Şimşek, Ö. (2024). Nano silica’s role in regulating heavy metal uptake in Calendula officinalis. BMC Plant Biology24(1), 598. https://doi.org/10.1186/s12870-024-05311-1
Sebastian, A., Nangia, A., & Prasad, M. N. V. (2018). Green Synthesis of Iron Nanoparticles from Selected Plant Materials of Peninsular India. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences88, 195-203. https://doi.org/10.1007/s40010-017-0391-4
Shahzad, R., Harlina, P. W., Khan, S. U., Koerniati, S., Hastilestari, B. R., Ningrum, R. A., Wahab, R., Djalovic, I., & Prasad, P. V. (2024). Iron oxide nanoparticles alleviate salt-alkaline stress and improve growth by modulating antioxidant defense system in cherry tomato. Journal of Plant Interactions19(1), 2375508. https://doi.org/10.1080/17429145.2024.2375508
Sharma, B., Tiwari, S., Kumawat, K. C., & Cardinale, M. (2023). Nano-biofertilizers as bio-emerging strategies for sustainable agriculture development: Potentiality and their limitations. Science of The Total Environment860, 160476. https://doi.org/10.1007/s40726-023-00290-7
Sheikhbahaei, N., Rezanejad, F., & Arvin, S. M. J. (2020). Mozafati date as a potential treasure of calcium and antioxidant compounds: assessment of these phytochemicals during development. Journal of Food Measurement and Characterization, 14(3), 1273-1285. https://doi.org/10.1007/s11694-020-00375-7
Siddiqui, M. H., Al Whaibi, M. H., Faisal, M., & Al Sahli, A. A. (2014). Nano silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environmental Toxicology and Chemistry. 33, 2429–2437. https://doi.org/10.1002/etc.2697
Tombuloglu, H., Slimani, Y., Akhtar, S., Alsaeed, M., Tombuloglu, G., Almessiere, M. A., ... & Ercan, I. (2022). The size of iron oxide nanoparticles determines their translocation and effects on iron and mineral nutrition of pumpkin (Cucurbita maxima L.). Journal of Magnetism and Magnetic Materials564, 170058. https://doi.org/10.1007/s40010-017-0391-4
Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., & Rehman, H. (2020). Nanotechnology in agriculture: current status, challenges and future opportunities. Science of the Total Environment. 721:137778. https://doi.org/10.1016/j.scitotenv. 2020.137778
Venugopal, R., Dhanyaprabha, K. C., Thomas, H., & Sini, R. (2020). Optical characterisation of cadmium doped Fe3O4 ferrofluids by co-precipitation method. Materials Today: Proceedings25, A1-A5. https://doi.org/10.1016/j.matpr.2020.03.142
Win, T. T., Khan, S., Bo, B., Zada, S., & Fu, P. (2021). Green synthesis and characterization of Fe3O4 nanoparticles using Chlorella-K01 extract for potential enhancement of plant growth stimulating and antifungal activity. Scientific Reports11(1), 21996. https://doi.org/10.1038/s41598-021-01538-2
Winiarczyk, K., Gac, W., Góral-Kowalczyk, M., & Surowiec, Z. (2021). Magnetic properties of iron oxide nanoparticles with a DMSA-modified surface. Hyperfine Interactions, 242(48), 1-13. https://doi.org/10.1007/s10751-021-01768-w
Yang, X., Alidoust, D., & Wang, C. (2020). Effects of iron oxide nanoparticles on the mineral composition and growth of soybean (Glycine max L.) plants. Acta Physiologiae Plantarum, 42(8), 1-11. https://doi.org/10.1007/s40010-017-0391-4
Zhang, J., Lin, S., Han, M., Su, Q., Xia, L., & Hui, Z. (2020). Adsorption properties of magnetic magnetite nanoparticle for coexistent Cr (VI) and Cu (II) in mixed solution. Water12(2), 446. https://doi.org/10.3390/w12020446