Dudziak, K., Zapalska, M., Borner, A., Szczerba, H., Kowalczyk, K., & Nowak, M. (2019). Analysis of wheat gene expression related to the oxidative stress response and signal transduction under short-term osmotic stress.
scientific reports,
9(1), 2743.
https://doi.org/10.1038/s41598-019-39154-w
Dutta, S., Jha, S.K., Prabhu, K.V., Kumar, M., & Mukhopadhyay, K. (2019). Leaf rust (
Puccinia triticina) mediated RNAi in wheat (
Triticum aestivum L.) prompting host susceptibility.
Funct Integr Genomics,
19(3), 437-452.
https://doi.org/10.1007/s10142-019-00655-6
E.M. Hafez, H.S.G. (2016). Effect of exogenous application of ascorbic acid on physiological and biochemical characteristics of wheat under water stress. international journal of Plant Production, 10(4), 18. https://doi.org/ 10.22069/IJPP.2016.3051
Fang, S., Sun, S., Cai, H., Zou, X., Wang, S., Hao, X., Wan, X., Tian, J., Li, Z., He, Z., Huang, W., Liang, C., Zhang, Z., Yang, L., Tian, J., Yu, B., & Sun, B. (2021). IRGM/Irgm1 facilitates macrophage apoptosis through ROS generation and MAPK signal transduction: Irgm1 (+/-) mice display increases atherosclerotic plaque stability.
Theranostics,
11(19), 9358-9375.
https://doi.org/10.7150/thno.62797
Farooq, A., Bukhari, S. A., Akram, N. A., Ashraf, M., Wijaya, L., Alyemeni, M. N., & Ahmad, P. (2020). Exogenously applied ascorbic acid-mediated changes in osmoprotection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (
Carthamus tinctorious L.).
Plants (Basel),
9(1).
https://doi.org/10.3390/plants9010104
Goyal, R. K., Tulpan, D., Chomistek, N., González-Peña Fundora, D., West, C., Ellis, B. E., & Foroud, N. A. (2018). Analysis of MAPK and MAPKK gene families in wheat and related Triticeae species. BMC genomics, 19(1), 178. https://doi.org/10.1186/s12864-018-4545-9
Karimi, J., Mohsenzadeh, S., Niazi, A., & Moghadam, A. (2017). Differential expression of mitochondrial manganese superoxide dismutase (SOD) in Triticum aestivum exposed to silver nitrate and silver nanoparticles.
Iran Journal Biotechnol,
15(4), 284-288.
https://doi.org/10.15171/ijb.1311
Liu, X., Lin, Y., Liu, D., Wang, C., Zhao, Z., Cui, X., Liu, Y., & Yang, Y. (2017). MAPK-mediated auxin signal transduction pathways regulate the malic acid secretion under aluminum stress in wheat (
Triticum aestivum L.).
Scientific Reports,
7(1), 1620.
https://doi.org/10.1038/s41598-017-01803-3
Liang, P. P., Chen, Z. H. A. O., Yuan, L. I. N., Geng, J. J., Yuan, C. H. E. N., Chen, D. H., & Zhang, X. (2020). Effects of sodium benzoate on growth and physiological characteristics of wheat seedlings under compound heavy metal stress. Journal of Integrative Agriculture, 19(4), 1010-1018. https://doi.org/10.1016/S2095-3119(19)62723-1
Hasanuzzaman, M. B., Anee, T. I., Parvin, K., Nahar, K., Mahmud, J., & Fujita, M. (2019). Regulation of ascorbate-glutathionepathway in mitigating oxidative damage in plants under abiotic stress [Review].
MDPI,
8, 50.
https://doi.org/10.3390/antiox8090384
Majumdar, A., & Kar, R. K. (2023). Polyamines and their metabolism play pivotal role in ROS-mediated regulation of early root growth in Vigna radiata (L.) Wilczek. Journal of Plant Growth Regulation, 42(8), 5280-5293
Rashid, M. A. Nosheen, S., Noor Elahi, N., Sibgha, N., & Shah., K. H. (2021). Antioxidant defense system is a key mechanism for drought stress tolerance in wheat (Triticum aestivum L.) 11. https://doi.org/10.17582/journal.sja/2021/37.2.348.358
Navabpour, S., & Mazandarani, A. (2017). Molecular and biochemical evaluation of two bread wheat cultivars under oxidative stress,7(3),357-367. (In Persian) https://doi.org/10.22124/c.2018.5178.1202
Navabpour, S., Morris, K., Allen, R., Harrison, E., S, A. H.M., & Buchanan-Wollaston, V. (2003). Expression of senescence-enhanced genes in response to oxidative stress. Journal of Experimental Botany, 54(391), 2285-2292. https://doi.org/ 10.1093/ jxb/erg267
Navabpour, S., Yamchi, A., Bagherikia, S., & Kafi, H. (2020). Lead-induced oxidative stress and role of antioxidant defense in wheat (
Triticum aestivum L.).
Physiol Mol Biol Plants,
26(4), 793-802.
https://doi.org/10.1007/s12298-020-00777-3
Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic acids research, 30(9), 36. https://doi.org/10.1093/nar/30.9.e36
Poblete Aro, C. E., Russell Guzman, J. A., Soto Munoz, M. E., & Villegas Gonzalez, B. E. (2015). Effects of high intensity interval training versus moderate intensity continuous training on the reduction of oxidative stress in type 2 diabetic adult patients: CAT. Medwave, 15(7), e6212. https://doi.org/10.5867/ medwave.2015.07.6212
Rizvi, A., & Khan, M. S. (2017). Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Chemosphere, 185, 942-952. https://doi.org/10.1016/ j.chemosphere. 2017.07.088
Rout, N. P., & Shaw, B. P. (2001). Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes. Plant Science, 160(3), 415-423. https://doi.org/10.1016/S0168-9452(00)00406-4
Sharma, R., Bhardwaj, R., Thukral, A. K., Al-Huqail, A. A., Siddiqui, M. H., & Ahmad, P. (2019). Oxidative stress mitigation and initiation of antioxidant and osmoprotectant responses mediated by ascorbic acid in
Brassica juncea L. subjected to copper (II) stress.
Ecotoxicology and Environmental Safety, 182, 109436.
https://doi.org/10.1016/j.ecoenv.2019.109436
Singh, R., & Rathore, D. (2018). Oxidative stress defence responses of wheat (Triticum aestivum L.) and chilli (Capsicum annum L.) cultivars grown under textile effluent fertilization. Plant Physiology and Biochemistry, 123, 342-358. https://doi.org/10.1016/j.plaphy.2017.12.027
Sousa, R. H. V., Carvalho, F. E. L., Lima-Melo, Y., Alencar, V., Daloso, D. M., Margis-Pinheiro, M., Komatsu, S., & Silveira, J. A. G. (2019). Impairment of peroxisomal APX and CAT activities increases protection of photosynthesis under oxidative stress. Journal of Experimental Botany, 70(2), 627-639. https://doi.org/ 10.1093/ jxb/ery354
Taiwo, F. A. (2008). Mechanism of tiron as scavenger of superoxide ions and free electrons. Journal of spectroscopy, 22(6), 491-498. https://doi.org/10.3233/SPE-2008-0362
Wang, M., Yue, H., Feng, K., Deng, P., Song, W., & Nie, X. (2016). Genome-wide identification, phylogeny and expressional profiles of mitogen activated protein kinase kinase kinase (MAPKKK) gene family in bread wheat (
Triticum aestivum L.).
BMC Genomics,
17, 668.
https://doi.org/10.1186/s12864-016-2993-7.
Zhan, H., Yue, H., Zhao, X., Wang, M., Song, W., & Nie, X. (2017). Genome-wide identification and analysis of MAPK and MAPKK gene families in bread wheat (
Triticum aestivum L.).
Genes (Basel),
8(10).
https://doi.org/10.3390/genes8100284