بررسی واکنش افتراقی برخی ژن‌ها تحت‌تاثیر تنش اکسیداتیو در سه رقم گندم نان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه اصلاح نباتات و بیوتکنولوژی ، دانشکده تولید گیاهی، دانشگاه منابع طبیعی و علوم کشاورزی گرگان، گرگان، ایران

2 استاد، گروه اصلاح نباتات و بیوتکنولوژی ، دانشکده تولید گیاهی، دانشگاه منابع طبیعی و علوم کشاورزی گرگان، گرگان، ایران

3 دانش آموخته دکتری، گروه اصلاح نباتات و بیوتکنولوژی ، دانشکده تولید گیاهی، دانشگاه منابع طبیعی و علوم کشاورزی گرگان، گرگان، ایران

4 دانشجوی دکتری، گروه اصلاح نباتات و بیوتکنولوژی ، دانشکده تولید گیاهی، دانشگاه منابع طبیعی و علوم کشاورزی گرگان، گرگان، ایران

10.22034/plant.2025.143480.1156

چکیده

با هدف ارزیابی تاثیر سطوح تنش اکسیداتیو بر برخی ژن‌ها مطالعه‌ای بر روی سه رقم گیاه گندم (احسان، کلاته و گنبد) در گلخانه تحقیقاتی دانشگاه علوم کشاورزی و منابع طبیعی گرگان صورت گرفت. در این راستا، دو آزمایش مجزا مشتمل بر بررسی سطوح نیترات نقره (در سه سطح 0، 1 و 2 میلی‌مولار) بعنوان عامل اکسیداتیو و اسید آسکوربیک (در سه سطح 0، 10 و 20 میلی‌مولار) بعنوان پاداکسیدان عمومی انجام گرفت. آزمایش دوم برای تعیین اثر اختصاصی یون سوپراکسید و اکسیژن اتمی بعنوان عوامل سیگنالی یا اکسیداتیو انجام شد که از پاک‌کننده‌های اختصاصی آن‌ها به ترتیب تیرون (با غلظت 0، 2 و 4 میلی مولار) و دبکو (با غلظت 0، 15 و 30 میلی مولار) بعنوان پیش تیمار نیترات نقره استفاده گردید. اعمال تمامی تیمارها با انجام محلول پاشی (مه پاش) در محدوده مرحله 60 زادکس (8 برگی) انجام و به منظور افزایش دقت از طرح کامل تصادفی استفاده شد. کلیه تیمارهای آزمایشی با هدف ارزیابی بیان برخی ژن‌ها اعم از CAT، GPX، MAPK3 و MAPK6 انجام گرفت. نتایج نشان داد. بیان نسبی ژن‌های MAPK3 و MAPK6 همبستگی مثبتی با افزایش میزان آسکوربیک اسید در رقم احسان نشان داد. همچنین مشخص شد MAPK6 از طریق مسیرهای سیگنالینگ خود باعث القای بیان ژن و افزایش بیان کاتالاز می‌گردد. در عین حال مشخص شد رقم احسان نسبت به سایر ارقام، تحت‌تاثیر آسکوربیک اسید عملکرد بهتری نسبت به تاثیر پاداکسیدان‌های اختصاصی داشته و در شرایط تنش واکنش بهتری دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of the differential response of certain genes to oxidative stress in three bread wheat cultivars

نویسندگان [English]

  • Somaye Damavandi 1
  • Saied Navabpour 2
  • Abolfazl Mazandarani 3
  • Mojtaba Molaee 4
1 MSc. student,, Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Natural Resources and Agricultural Sciences, Gorgan, Iran
2 Professor,, Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Natural Resources and Agricultural Sciences, Gorgan, Iran
3 Ph.D. graduate,, Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Natural Resources and Agricultural Sciences, Gorgan, Iran
4 Ph.D. student,, Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Natural Resources and Agricultural Sciences, Gorgan, Iran
چکیده [English]

A study was conducted on three wheat cultivars (Ehsan, Kalateh, and Gonbad) in the research greenhouse of Gorgan University of Agricultural Sciences and Natural Resources to evaluate the impact of oxidative stress levels on specific genes. Two separate experiments were carried out. The first experiment involved studying silver nitrate levels (at 0, 1, and 2 mM) as an oxidative agent and ascorbic acid (at 0, 10, and 20 mM) as a general antioxidant. The second experiment aimed to determine the specific effects of superoxide ion and atomic oxygen as signaling or oxidative agents. Specific scavengers, Tirone (at 0, 2, and 4 mM) and Debco (at 0, 15, and 30 mM), were used as pretreatment of silver nitrate. All treatments were applied through foliar spraying at the 60 Zadex stage (8 leaves) using a completely randomized design for accuracy. The study evaluated the expression of genes including CAT, GPX, MAPK3, and MAPK6. Results indicated a positive correlation between the relative expression of MAPK3 and MAPK6 genes and increased levels of ascorbic acid in the Ehsan cultivar. It was observed that MAPK6 induced gene expression and enhanced catalase expression through its signaling pathways. Additionally, the Ehsan cultivar exhibited superior performance under the influence of ascorbic acid compared to specific antioxidants and showed better responses to stress conditions than the other cultivars.

کلیدواژه‌ها [English]

  • Catalase
  • Glutathione peroxidase
  • Oxidative stress
  • Silver nitrate
  • Wheat
Agnieszka Gęgotek, E. S. (2022). Antioxidative and anti-inflammatory activity of ascorbic acid. MDPI, 11, 18. https://doi.org/10.3390/antiox11101993
Dudziak, K., Zapalska, M., Borner, A., Szczerba, H., Kowalczyk, K., & Nowak, M. (2019). Analysis of wheat gene expression related to the oxidative stress response and signal transduction under short-term osmotic stress. scientific reports, 9(1), 2743. https://doi.org/10.1038/s41598-019-39154-w
Dutta, S., Jha, S.K., Prabhu, K.V., Kumar, M., & Mukhopadhyay, K. (2019). Leaf rust (Puccinia triticina) mediated RNAi in wheat (Triticum aestivum L.) prompting host susceptibility. Funct Integr Genomics, 19(3), 437-452. https://doi.org/10.1007/s10142-019-00655-6
E.M. Hafez, H.S.G. (2016). Effect of exogenous application of ascorbic acid on physiological and biochemical characteristics of wheat under water stress. international journal of Plant Production, 10(4), 18. https://doi.org/ 10.22069/IJPP.2016.3051
Fang, S., Sun, S., Cai, H., Zou, X., Wang, S., Hao, X., Wan, X., Tian, J., Li, Z., He, Z., Huang, W., Liang, C., Zhang, Z., Yang, L., Tian, J., Yu, B., & Sun, B. (2021). IRGM/Irgm1 facilitates macrophage apoptosis through ROS generation and MAPK signal transduction: Irgm1 (+/-) mice display increases atherosclerotic plaque stability. Theranostics, 11(19), 9358-9375. https://doi.org/10.7150/thno.62797
Farooq, A., Bukhari, S. A., Akram, N. A., Ashraf, M., Wijaya, L., Alyemeni, M. N., & Ahmad, P. (2020). Exogenously applied ascorbic acid-mediated changes in osmoprotection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (Carthamus tinctorious L.). Plants (Basel), 9(1). https://doi.org/10.3390/plants9010104
Goyal, R. K., Tulpan, D., Chomistek, N., González-Peña Fundora, D., West, C., Ellis, B. E., & Foroud, N. A. (2018). Analysis of MAPK and MAPKK gene families in wheat and related Triticeae species. BMC genomics19(1), 178.‏ https://doi.org/10.1186/s12864-018-4545-9
Karimi, J., Mohsenzadeh, S., Niazi, A., & Moghadam, A. (2017). Differential expression of mitochondrial manganese superoxide dismutase (SOD) in Triticum aestivum exposed to silver nitrate and silver nanoparticles. Iran Journal Biotechnol, 15(4), 284-288. https://doi.org/10.15171/ijb.1311
Liu, X., Lin, Y., Liu, D., Wang, C., Zhao, Z., Cui, X., Liu, Y., & Yang, Y. (2017). MAPK-mediated auxin signal transduction pathways regulate the malic acid secretion under aluminum stress in wheat (Triticum aestivum L.). Scientific Reports, 7(1), 1620. https://doi.org/10.1038/s41598-017-01803-3
Liang, P. P., Chen, Z. H. A. O., Yuan, L. I. N., Geng, J. J., Yuan, C. H. E. N., Chen, D. H., & Zhang, X. (2020). Effects of sodium benzoate on growth and physiological characteristics of wheat seedlings under compound heavy metal stress. Journal of Integrative Agriculture19(4), 1010-1018. https://doi.org/10.1016/S2095-3119(19)62723-1
Hasanuzzaman, M. B., Anee, T. I., Parvin, K., Nahar, K., Mahmud, J., & Fujita, M. (2019). Regulation of ascorbate-glutathionepathway in mitigating oxidative damage in plants under abiotic stress [Review]. MDPI, 8, 50. https://doi.org/10.3390/antiox8090384
Majumdar, A., & Kar, R. K. (2023). Polyamines and their metabolism play pivotal role in ROS-mediated regulation of early root growth in Vigna radiata (L.) Wilczek. Journal of Plant Growth Regulation42(8), 5280-5293
Rashid, M. A. Nosheen, S., Noor Elahi, N., Sibgha, N., & Shah., K. H. (2021). Antioxidant defense system is a key mechanism for drought stress tolerance in wheat (Triticum aestivum L.) 11. https://doi.org/10.17582/journal.sja/2021/37.2.348.358
Navabpour, S., & Mazandarani, A. (2017). Molecular and biochemical evaluation of two bread wheat cultivars under oxidative stress,7(3),357-367. (In Persian) https://doi.org/10.22124/c.2018.5178.1202
Navabpour, S., Morris, K., Allen, R., Harrison, E., S, A. H.M., & Buchanan-Wollaston, V. (2003). Expression of senescence-enhanced genes in response to oxidative stress. Journal of Experimental Botany, 54(391), 2285-2292. https://doi.org/ 10.1093/ jxb/erg267
Navabpour, S., Yamchi, A., Bagherikia, S., & Kafi, H. (2020). Lead-induced oxidative stress and role of antioxidant defense in wheat (Triticum aestivum L.). Physiol Mol Biol Plants, 26(4), 793-802. https://doi.org/10.1007/s12298-020-00777-3
Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic acids research, 30(9), 36. https://doi.org/10.1093/nar/30.9.e36
Poblete Aro, C. E., Russell Guzman, J. A., Soto Munoz, M. E., & Villegas Gonzalez, B. E. (2015). Effects of high intensity interval training versus moderate intensity continuous training on the reduction of oxidative stress in type 2 diabetic adult patients: CAT. Medwave, 15(7), e6212. https://doi.org/10.5867/ medwave.2015.07.6212
Rizvi, A., & Khan, M. S. (2017). Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Chemosphere, 185, 942-952. https://doi.org/10.1016/ j.chemosphere. 2017.07.088
Rout, N. P., & Shaw, B. P. (2001). Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes. Plant Science160(3), 415-423. https://doi.org/10.1016/S0168-9452(00)00406-4
Sharma, R., Bhardwaj, R., Thukral, A. K., Al-Huqail, A. A., Siddiqui, M. H., & Ahmad, P. (2019). Oxidative stress mitigation and initiation of antioxidant and osmoprotectant responses mediated by ascorbic acid in Brassica juncea L. subjected to copper (II) stress. Ecotoxicology and Environmental Safety, 182, 109436. https://doi.org/10.1016/j.ecoenv.2019.109436
Singh, R., & Rathore, D. (2018). Oxidative stress defence responses of wheat (Triticum aestivum L.) and chilli (Capsicum annum L.) cultivars grown under textile effluent fertilization. Plant Physiology and Biochemistry, 123, 342-358. https://doi.org/10.1016/j.plaphy.2017.12.027
Sousa, R. H. V., Carvalho, F. E. L., Lima-Melo, Y., Alencar, V., Daloso, D. M., Margis-Pinheiro, M., Komatsu, S., & Silveira, J. A. G. (2019). Impairment of peroxisomal APX and CAT activities increases protection of photosynthesis under oxidative stress. Journal of Experimental Botany, 70(2), 627-639. https://doi.org/ 10.1093/ jxb/ery354
Taiwo, F. A. (2008). Mechanism of tiron as scavenger of superoxide ions and free electrons. Journal of spectroscopy22(6), 491-498.‏ https://doi.org/10.3233/SPE-2008-0362
Wang, M., Yue, H., Feng, K., Deng, P., Song, W., & Nie, X. (2016). Genome-wide identification, phylogeny and expressional profiles of mitogen activated protein kinase kinase kinase (MAPKKK) gene family in bread wheat (Triticum aestivum L.). BMC Genomics, 17, 668. https://doi.org/10.1186/s12864-016-2993-7.
 Zhan, H., Yue, H., Zhao, X., Wang, M., Song, W., & Nie, X. (2017). Genome-wide identification and analysis of MAPK and MAPKK gene families in bread wheat (Triticum aestivum L.). Genes (Basel), 8(10). https://doi.org/10.3390/genes8100284