Azharudheen, T. P., Sah, R. P., Moharana, D., Behera, S., & Pradhan, S. K. (2021). Genetic Improvement of Rice for Lowlands. In book:Advances in Rice Breeding : Stress Tolerance, Climate Resilience, Quality & High Yield. Edition: 1. ICAR-National Rice Research Institute: Cuttack, India, 63-85.
Bradbury, L. M., Fitzgerald, T. L., Henry, R. J., Jin, Q., & Waters, D. L. (2005). The gene for fragrance in rice. Plant biotechnology journal, 3(3), 363-370.
Chigira, K., Kojima, N., Yamasaki, M., Yano, K., Adachi, S., Nomura, T., ... & Ookawa, T. (2020). Landraces of temperate japonica rice have superior alleles for improving culm strength associated with lodging resistance. scientific reports, 10(1), 19855. https://doi.org/10.1038/s41598-020-76949-8.
Conner, T. (2004). Precision breeding: A new genetic technique providing international opportunities for crop improvement. Seed Quest.
Cordeiro, G. M., Christopher, M. J., Henry, R. J., & Reinke, R. F. (2002). Identification of microsatellite markers for fragrance in rice by analysis of the rice genome sequence. Molecular Breeding, 9,245-250.
Doyle, J. (1991). DNA protocols for plants. Molecular techniques in taxonomy. NATO ASI Ser, 57, 283-293.
GirijaRani,M., Satyanarayana,P.V., Lal Ahmad,M., AshokRani,.Y., Srinivasa Rao,V &., Jhansirani,.P.(2017). Breeding Strategies for Lodging Resistance in Rice. InternationalJournal of Bio-resource and Stress Management. 8. 895-903. https://doi.org/10.23910/IJBSM/2017.8.6.1793a.
Gichuhi, E., Himi, E., Takahashi, H., Zhu, S., Doi, K., Tsugane, K., & Maekawa, M. (2016). Identification of QTLs for yield-related traits in RILs derived from the cross between pLIA-1 carrying Oryza longistaminata chromosome segments and Norin 18 in rice. Breeding science , 66(5),720-733. doi: https://doi.org/ 10.1270 /jsbbs.16083.
Guo, Z., Liu, X., Zhang, B., Yuan, X., Xing, Y., Liu, H., Luo, L., Chen, G. and Xiong, L. (2021). Genetic analyses of lodging resistance and yield provide insights into post‐Green‐Revolution breeding in rice. Plant Biotechnology Journal, 19(4), 814-829. doi: 10.1111/pbi.13509.
He, Q., & Park, Y. J. (2015). Discovery of a novel fragrant allele and development of functional markers for fragrance in rice. Molecular breeding, 35,(11)-217. DOI 10.1007/s11032-015-0412-4.
Hirano, K., Ordonio, R. L., & Matsuoka, M. (2017). Engineering the lodging resistance mechanism of post-Green Revolution rice to meet future demands. Proceedings of the Japan Academy, Series B, 93(4), 220-233.doi: 10.2183/pjab.93.014.
Ikeda, M., Miura, K., Aya, K., Kitano, H., & Matsuoka, M. (2013). Genes offering the potential for designing yield-related traits in rice. Current opinion in plant biology, 16(2), 213-220.dx.doi.org/10.1016/j.pbi.2013.02.002.
Ikeda-Kawakatsu, K., Yasuno, N., Oikawa, T., Iida, S., Nagato, Y., Maekawa, M., & Kyozuka, J. (2009). Expression level of ABERRANT PANICLE ORGANIZATION1 determines rice inflorescence form through control of cell proliferation in the meristem. Plant physiology, 150(2), 736-747.
Ikeda, K., Ito, M., Nagasawa, N., Kyozuka, J., & Nagato, Y. (2007). Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F‐box protein, regulates meristem fate. The Plant Journal, 51(6), 1030-1040.
Jiang, J., Xing, F., Wang, C., & Zeng, X. (2018). Identification and analysis of rice yield-related candidate genes by walking on the functional network. Frontiers in plant science, 9, 1685.doi: 10.3389/fpls.2018.01685.
Kim, S. R., Ramos, J., Ashikari, M., Virk, P. S., Torres, E. A., Nissila, E., ... & Jena, K. K. (2016). Development and validation of allele-specific SNP/indel markers for eight yield-enhancing genes using whole-genome sequencing strategy to increase yield potential of rice, Oryza sativa L. Rice, 9, 1-12.
Lau, W. C., Rafii, M. Y., Ismail, M. R., Puteh, A., Latif, M. A., & Ramli, A. (2015). Review of functional markers for improving cooking, eating, and the nutritional qualities of rice. Frontiers in Plant Science, 6, 832
Li, S., Rao, Y., Duan, P., Wang, Z., Hu, P., Yu, R., ... & Mao, Y. (2023). Mapping and Candidate Gene Prediction of qPL7-25: A Panicle Length QTL in Dongxiang Wild Rice. Agriculture, 13(8), 1623. https://doi.org/10.3390/agriculture13081623.
Liu, M., Fan, F., He, S., Guo, Y., Chen, G., Li, N., Li, N., Yuan, H., Si, F. and Yang, F. (2022). Creation of elite rice with high-yield, superior-quality and high resistance to brown planthopper based on molecular design. Rice, 15: 1-13.
Lübberstedt, T., Zein, I., Andersen, J.R., Wenzel, G., Krützfeldt, B., Eder, J., Ouzunova, M. and Chun, S. )2005(. Development and application of functional markers in maize. Euphytica, 146 , 101-108.
Merugumala, G. R., PV, S., Narne, C., BNVSR, R., PV, R. R., & V, D. (2019). Molecular breeding of “Swarna,” a mega rice variety for lodging resistance. Molecular Breeding, 39, 1-14. https://doi.org/10.1007/s11032-019-0961-z.
Meng, B., Wang, T., Luo, Y., Xu, D., Li, L., Diao, Y., Gao, Z., Hu, Z & Zheng, X. (2021). Genome-wide association study identified novel candidate loci/genes affecting lodging resistance in rice. Genes, 12(5), 718. https://doi.org/10.3390/ genes12050718.
Mohtashami R. (2023). Genotype × Environment interaction and grain yield stability analysis of rice genotypes (Oryza sativa L). Journal of crop Breeding.15(47),113-122.(In Persian). https://doi.org/10.61186/jcb.15.47.113.
Ookawa, T., Aoba, R., Yamamoto, T., Ueda, T., Takai, T., Fukuoka, S., ... & Hirasawa, T. (2016). Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice. Scientific reports, 6(1), 30572. https://doi.org/10.1038/srep30572.
Ookawa, T., Hobo, T., Yano, M., Murata, K., Ando, T., Miura, H., ... & Matsuoka, M. (2010). New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nature communications 1, 132. https://doi.org/10.1038/ncomms1132.
Rachana, B., Eswari, K. B., Jyothi, B., Devi, L. G., Vidhya, J. L., Bhavani, L. P., ... & Ram, T. (2019). Characterization of new plant type core set of rice (Oryza sativa L.) using QTL/gene-linked markers. ORYZA-An International Journal on Rice, 56(4), 352-360. https://doi.org/10.35709/ory.2019.56.4.2
Rahman, M.H. (2016). Exploring Sustainability to feed the world in 2050. Journal of Food Microbiology, 1(1), 7-16. https://doi.org/10.20936/JFM/160102
Rashid, M. A. R., Zhao, Y., Azeem, F., Zhao, Y., Ahmed, H. G. M. D., Atif, R. M., ... & Li, Z. (2022). Unveiling the genetic architecture for lodging resistance in rice (Oryza sativa. L) by genome-wide association analyses. Frontiers in Genetics, 13, 960007. https://doi.org/10.3389/fgene.2022.960007.
Sakuma, S., & Schnurbusch, T. (2020). Of floral fortune: tinkering with the grain yield potential of cereal crops. New Phytologist, 225(5), 1873-1882. https://doi.org/10.1111/nph.16189.
Salgotra, R. K., & Stewart Jr, C. N. (2020). Functional markers for precision plant breeding. International journal of molecular sciences, 21(13), 4792. doi:10.3390/ijms21134792.
Samadi, A. F., Suzuki, H., Ueda, T., Yamamoto, T., Adachi, S., & Ookawa, T. (2019). Identification of quantitative trait loci for breaking and bending types lodging resistance in rice, using recombinant inbred lines derived from Koshihikari and a strong culm variety, Leaf Star. Plant Growth Regulation, 89, 83-98. https://doi.org/10.1007/s10725-019-00517-y.
Singh, N., Kumar, R., Tomar, A., Singh, J., & Singh, S. (2015). Molecular marker based genetic diversity analysis of international rice (Oryza sativa. L) Germplasm. Progressive Agriculture, 15(1), 142-147.
Tao, G. U. O., Hong, Y. U., Jie, Q. I. U., JiaYang, L. I., Bin, H. A. N., & HongXuan, L. I. N. (2019). Advances in rice genetics and breeding by molecular design in China. Scientia Sinica Vitae, 49(10), 1185-1212.
Terao, T., Nagata, K., Morino, K., & Hirose, T. (2010). A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theoretical and Applied Genetics, 120, 875-893. https://doi.org/10.1007/s00122-009-1218-810.1007/s00122-009-1218-8.
Tran, N. A., Daygon, V. D., Resurreccion, A. P., Cuevas, R. P., Corpuz, H. M., & Fitzgerald, M. A. (2011). A single nucleotide polymorphism in the Waxy gene explains a significant component of gel consistency. Theoretical and Applied Genetics, 123(4), 519-525. https://doi.org/10.1007/s00122-011-1604-x
Varshney, R. K., Singh, V. K., Kumar, A., Powell, W., & Sorrells, M. E. (2018). Can genomics deliver climate-change ready crops?. Current opinion in plant biology, 45, 205-211.
Yadav, S., Singh, U.M., Naik, S.M., Venkateshwarlu, C., Ramayya, P.J., Raman, K.A., Sandhu, N. and Kumar, A. )2017(. Molecular mapping of QTLs associated with lodging resistance in dry direct-seeded rice (Oryza sativa L.). Frontiers in Plant Science, 8, 1431. https://doi.org/10.3389/fpls.2017.01431.
Yang, X., Lai, Y., Wang, L., Zhao, M., Wang, J., Li, M., ... & Jiang, S. (2023). Isolation of a novel QTL, qSCM4, associated with strong culm affects lodging resistance and panicle branch number in rice. International Journal of Molecular Sciences, 24(1), 812. https://doi.org/10.3390/ijms/24010812.
Yousefi, Z., Bagheri, K., Modarresi, M., & Hosseinpour Azad, N. (2023). Phenotypic and Molecular Screening of Different Genotypes of Rice based on the Markers Related to the Aroma Trait. Journal of Crop Breeding. 15(47), 186-194.(In persian). https://doi.org/10.61186/jcb.15.47.186.
Zhang, W., Wu, L., Wu, X., Ding, Y., Li, G., Li, J., ... & Wang, S. (2016). Lodging resistance of japonica rice (Oryza Sativa L.): morphological and anatomical traits due to top-dressing nitrogen application rates. Rice, 9(1), 31. https://doi.org/10.1186/s12284-016-0103-8.
Zhang, H., Wang, H., Qian, Y., Xia, J., Li, Z., Shi, Y., ... & Li, Z. (2013). Simultaneous improvement and genetic dissection of grain yield and its related traits in a backbone parent of hybrid rice (Oryza sativa L.) using selective introgression. Molecular Breeding, 31, 181-194.
Zhao, D. D., Son, J. H., Lee, G. S., & Kim, K. M. (2021). Screening for a novel gene, OsPSLSq6, using QTL analysis for lodging resistance in rice. Agronomy, 11(2), 334. https://doi.org/10.3390/agronomy11020334.