اثر کودهای زیستی، آلی و سیلیکات پتاسیم بر برخی شاخص‌های رشدی و صفات مورفولوژیک گوجه‌فرنگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ملایر، ملایر، ایران

2 گروه زراﻋﺖ، دانشگاه ﻋﻠﻮم کشاورزی و ﻣﻨﺎﺑﻊ طبیعی گرگان، گرگان، ایران

10.22034/plant.2026.144874.1179

چکیده

مقدمه: امروزه کودهای آلی با منشاء زیستی با دارا بودن محرک‌های رشد گیاه، عناصر غذایی و مواد آلی به­طور وسیعی برای بهبود کمیت و کیفیت محصولات کشاورزی به کار برده می‌شوند. از طرفی گیاه گوجه‌فرنگی (Lycopersicon esculentum L.) جایگاه ویژه‌ای در تغذیه بشر در سرتاسر جهان دارد. این گیاه، به‌عنوان یکی از محصولات مهم کشاورزی در ایران، نقش عمده‌ای در تأمین نیازهای غذایی و اقتصادی ایفا می‌کند. در این پژوهش، اثرات برخی کودهای آلی و زیستی روی ویژگی‌های رشدی و کیفیت محصول گوجه‌فرنگی در شرایط کشت گلخانه‌ای مورد بررسی قرار گرفت.
مواد و روش‎‌ها: در این پژوهش تیمارهای آزمایشی شامل اسید آمینه، اسید هیومیک، عصاره جلبک دریایی و سیلیکات پتاسیم با غلظت 3 در هزار به‌صورت کاربرد خاکی و محلول‌پاشی برگی بود که به همراه تیمار شاهد (بدون کاربرد کود)، به تعداد 9 تیمار مورد بررسی قرار گرفتند. این پژوهش در قالب طرح کاملاً تصادفی با سه تکرار روی گیاه گوجه‌فرنگی در سال 1402 اجرا شد. در این پژوهش صفات ارتفاع بوته، قطر ساقه، تعداد، وزن و حجم میوه، رنگیزه‌های فتوسنتزی، محتوای نسبی آب برگ، قند محلول و پروتئین مورد بررسی قرار گرفتند.
یافته‌ها: نتایج تجزیه واریانس داده‌ها نشان داد که کاربرد تیمارها سبب بهبود خصوصیات مورفولوژیک، فیزیولوژیک و کیفیت میوه گوجه‌فرنگی شد. براساس مقایسه میانگین‌ها اسید هیومیک چه به­صورت محلول‌پاشی و چه مصرف در خاک به همراه مصرف خاکی سیلیکات پتاسیم بالاترین ارتفاع بوته در گوجه‌فرنگی را موجب شد. در بین تیمارهای آزمایش، محلول‌پاشی اسید آمینه بالاترین و تیمار شاهد کمترین تعداد گل در بوته را موجب شدند. با کاربرد در خاک جلبک دریایی، بالاترین محتوای نسبی آب برگ در گیاه گوجه‌فرنگی مشاهده شد. بیشترین غلظت کلروفیل a متعلق به تیمار کودی اسید هیومیک به­صورت کاربرد در خاک بود، در حالی‌که محلول‌پاشی جلبک دریایی بدون تفاوت معنی‌دار آماری با کاربرد در خاک اسید هیومیک بالاترین غلظت کلروفیل b در گوجه‌فرنگی را موجب شدند. بیشترین تعداد میوه در گوجه‌فرنگی از تیمار محلول‌پاشی اسید آمینه به دست آمد، با این حال به لحاظ وزن و حجم میوه، محلول‌پاشی با اسید هیومیک، بیشترین مقادیر را موجب شد. کاربرد سیلیکات پتاسیم در خاک باعث افزایش معنی‌دار قند محلول گردید. در این آزمایش اثر مثبت و معنی‌دار کودهای آلی روی صفات مورد بررسی گوجه‌فرنگی محرز شد، با این حال بسته به صفت، اثر تیمارها متفاوت بود.
نتیجه‌گیری: در مجموع، نتایج نشان داد که استفاده از کودهای آلی و زیستی، به‌ویژه اسید هیومیک، سیلیکات پتاسیم، جلبک دریایی و اسید آمینه، می‌تواند به بهبود ویژگی‌های کمی و کیفی گوجه‌فرنگی کمک کرده و در جهت کشاورزی پایدار مؤثر باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of bio-fertilizer, organic fertilizer and potassium silicate on morphological and physiological traits of tomato

نویسندگان [English]

  • Fatemeh Bayat 1
  • Zahra Movahedi 1
  • Majid Rostami 1
  • Mohammad Dashti Marvili 2
1 Department of Plant Production and Genetics, Faculty of Agriculture, Malayer University, Malayer, Iran
2 Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

Introduction: Nowadays, organic fertilizers with biological source are widely used to improve the quantity and quality of agricultural products by having plant growth stimulants, organic and mineral nutrients. Tomato (Lycopersicon esculentum L.) has a special place in human nutrition all over the world. this plant, as one of the important horticultural crops in Iran, plays a major role in meeting food and economic needs. In this research the effects of humic acid, amino acid, seaweed extract, and potassium silicate on quantity and quality characteristics of tomato were investigated under greenhouse conditions.
Materials and Methods: In this research, the experimental treatments included a control group, as well as humic acid, amino acid, seaweed extract, and potassium silicate, all applied at a concentration of 3 parts per thousand, in both soil and foliar application. The experiment was conducted based on a completely randomized design with nine treatments and three replications in 2023. The measured traits included plant height, number of flowers, number of fruits, fruit weight and volume, photosynthetic pigments, relative water content of leaves, soluble sugar and protein.
Results: The results of data variance analysis showed that the application of treatments improved the morphological, physiological characteristics and quality of tomato fruit. Based on the means comparison, humic acid, either as foliar application or soil application, along with soil application of potassium silicate, caused the highest plant height in tomato. Among the test treatments, amino acid foliar spray caused the highest and the control treatment caused the lowest number of flowers per plant. By using seaweed as soil appliction, the highest relative water content of leaves was observed in tomato plants. The highest concentration of chlorophyll a belonged to the treatment of humic acid fertilizer applied on soil, while seaweed foliar application caused the highest concentration of chlorophyll b in tomatoes without statistically significant difference with soil application of humic acid. The highest number of fruits in tomato was obtained from the amino acid foliar treatment, however, in terms of fruit weight and volume, humic acid foliar application caused in the highest values. The use of potassium silicate in the soil caused a significant increase in soluble sugar. In this experiment, the positive and significant effect of organic fertilizers on the studied traits of tomato was clarified, however, depending on the trait, the effect of the treatments was different.
Conclusion: Finally, the results showed that the use of organic and biological fertilizers, especially humic acid, potassium silicate, seaweed and amino acid, can improve the qualitative and quantitative characteristics of tomatoes and be effective in sustainable agriculture.

کلیدواژه‌ها [English]

  • Amino acid
  • Foliar application
  • Greenhouse
  • Humic acid
  • Seaweed extract
Abdoli, H., Nasiri, Y., Janmohammadi, M., & Nouraein, M. (2025). Effect of biological and chemical fertilizers and seaweed extract application on yield, yield components and some physiological traits of rainfed chickpea (Saeed cv.). Journal of Agricultural Science and Sustainable Production, 35(1), 1-24. (In Persian). https://doi.org/10.22034/saps.2024.56629.3046
Ahmadi, E., Sahabi, H., Fallahi, H. R., & Feizi, H. (2025). Nutrients can be effectively absorbed by saffron (Crocus sativus L.) leaves and affect positively the vegetative growth and flowering. Journal of Medicinal plants and By-products, 4, 345–356. https://doi.org/10.22034/jmpb.2025.366770.1744
Ali, O., Ramsubhag, A., & Jayaraman, J. (2021). Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants, 10(3), 531.  https://doi.org/10.3390/plants10030531
Aminifard, M.H., & Ahmadi, F. (2018). Study on effects of foliar spraying and soil split application of humic acid on vegetative characteristics and flower yield of saffron (Crocus sativus L.). Journal of Crop Production, 11(2), 123-132. (In Persian). https://doi.org/10.22069/ejcp.2018.12689.1992
Aminifard, M.H., & Khandan, S. (2019). The effect of different levels of seaweed extract on the growth, yield and biochemical characteristics of bitter squash (Momordica charantia L.). Journal of Plant Environmental Physiology, 13(52), 56-66. (In Persian)
Ampong, K., Thilakaranthna, M. S., & Gorim, L. Y. (2022). Understanding the role of humic acids on crop performance and soil health. Frontiers in Agronomy, 4, 848621. https://doi.org/10.3389/fagro.2022.848621
Areche, F., Aguilar, S. V., More López, J. M., Castañeda Chirre, E. T., Sumarriva-Bustinza, L. A., Pacovilca-Alejo, O. V., & Salas-Contreras, W. H. (2023). Recent and historical developments in chelated fertilizers as plant nutritional sources, their usage efficiency, and application methods. Brazilian Journal of Biology, 83, e271055. https://doi.org/10.1590/1519-6984.271055
Arnon, D. I. (1967). Photosynthetic activity of isolated chloroplasts. Physiological Reviews, 47(3), 317-358. https://doi.org/10.1152/physrev.1967.47.3.31
Aslani, S. , Barzegar, T., & Nikbakht, J. (2019). Effect of humic acid on physiological and biochemical indices and yield of tomato under deficit irrigation. Journal of Crops Improvement, 21(2), 221-232. (In Persian). https://doi.org/10.22059/jci.2019.272278.2137
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
de Moura, O. V. T., Berbara, R. L. L., de Oliveira Torchia, D. F., Da Silva, H. F. O., de Castro, T. A. V. T., Tavares, O. C. H., & García, A. C. (2023). Humic foliar application as sustainable technology for improving the growth, yield, and abiotic stress protection of agricultural crops. A review. Journal of the Saudi Society of Agricultural Sciences, 22(8), 493-513. https://doi.org/10.1016/j.jssas.2023.05.001
Devi, L. A., Saravanan, K., Desai, D., Arun, M., Senthilkumar, N., Bremkumar, S., & Selvam, I. K. (2025). Exogenous supplementation of potassium silicate (K2SiO3) enhances growth and productivity of Okra (Abelmoschus Esculentus). Journal of Soil Science and Plant Nutrition, 25, 1-18. https://doi.org/10.1007/s42729-025-02745-w
Elakiya, A., Jerlin, R., Sundaralingam, K., Gnanachitra, M., Maruthasalam, S., & Sathyamoorthy, P. (2025). Exploring Crop Stress Alleviation: A Potassium Silicate Perspective. Journal of Soil Science and Plant Nutrition, 25, 1-19. https://doi.org/10.1007/s42729-025-02423-x
El-Shawa, G. M., Alharbi, K., AlKahtani, M., AlHusnain, L., Attia, K. A., & Abdelaal, K. (2022). Improving the quality and production of philodendron plants using nanoparticles and humic acid. Horticulturae, 8(8), 678. https://doi.org/10.3390/horticulturae8080678
Esmaielpour, B., Fatemi, H., & Moradi, M. (2020). Effects of Seaweed Extract on Physiological and Biochemical Characteristics of Basil (Ocimum basilicum L.) under Water-Deficit Stress Conditions. Journal of Soil and Plant Interactions, 11(1), 59-69. (In Persian). https://doi:10.47176/jspi.11.1.10288
FAO. (2020). Crops and livestock products. https://www.fao.org/faostat/en/#data. Verified at 12.24.2025.
Galambos, N., Compant, S., Moretto, M., Sicher, C., Puopolo, G., Wäckers, F., & Perazzolli, M. (2020). Humic acid enhances the growth of tomato promoted by endophytic bacterial strains through the activation of hormone-, growth-, and transcription-related processes. Frontiers in Plant Science, 11, 582267. https://doi.org/10.3389/fpls.2020.582267
Ghayoumi-Mohammadi, N., & Asadi-Gharneh, H. (2019). Effects of foliar application and use of vermicompost on quantitative and qualitative characteristics of roselle (Hibiscus sabdariffa L.). Iranian Journal of Medicinal and Aromatic Plants Research, 34(6), 871-887. https://doi.org/10.22092/ijmapr.2019.115698.2152 (In Persian)
Grandy, A. S., Erich, M. S., & Porter, G. A. (2000). Suitability of the anthrone–sulfuric acid reagent for determining water soluble carbohydrates in soil water extracts. Soil Biology and Biochemistry, 32(5), 725-727. https://doi.org/10.1016/S0038-0717(99)00203-5
Haghighi, M., & Najafi, H. (2020). The Effect of Humic Acid and Amino Acid Organic Fertilizers on Growth of Greenhouse Tomato Fruits Harvested at Four Growth Stages. Journal of Soil and Plant Interactions, 11(2), 11-27. (In Persian). https://doi:10.47176/jspi.11.1.14917
Hassanvand, F., & Rezaei Nejad, A. (2018). Effect of potassium silicate on growth, physiological and biochemical characteristics of Pelargonium graveolens under salinity stress. Iranian Journal of Horticultural Science, 48(4), 743-752. (In Persian). https://doi: 10.22059/ijhs.2018.210950.104
Heidari, M., Paydar, A., Baradarn Firozabad, M., & Abedinin Esfalati, M. (2020). The Effect of drought stress and application of humic on quantitative yield, photosynthetic pigments, and mineralnutrients content in sunflower seeds. Iranian Journal of Field Crop Science, 50(4), 51-62. (In Persian). https://doi: 10.22059/ijfcs.2018.253008.654448
Jalilzadeh, E., Jabbarzadeh, Z., & Norouzi, P. (2018). Effect of foliar spray of different sources and concentrations of silicon on some morphological and physiological characteristics of Rose cv. Beverly Watson. Journal of Soil and Plant Interactions, 9(3), 65-78. (In Persian). https://doi: 20.1001.1.20089082.1397.9.3.7.1
Khalesi, A., Mousavi Mirkalaeia, S. A., Modares Sanavi, S. A. M., Eftekhari, A., & Nashaeai Moghadam, M. (2023). Effect of foliar application of some amino acids on growth and yield of chickpea (Cicer arientinum L.) under different irrigation regimes. Iranian Journal of Field Crop Science, 54(1), 27-40. (In Persian). https://doi: 10.22059/ijfcs.2022.339351.654902
Khani, A., Barzegar, T., Nikbakht, J., & Sabatino, L. (2025). Foliar application of K-silicate and L-cysteine enhances production, quality, and antioxidant activities of cape gooseberry fruits under drought conditions. Agronomy, 15(3), 675. https://doi.org/10.3390/agronomy15030675
Khayat Moghadam, M. S., Gholami, A., Shirani rad, A. H., BaradaranFiroozabadi, M., & Abbasdokht, H. (2021). The effect of Potassium Silicate and Late-Season Drought Stress on the Physiological Characters of Canola. Journal of Crops Improvement, 23(4), 776-761. (In Persian). https://doi.org/10.22059/jci.2021.306872.2424
Mehregan, B., Mousavi Fard, S., & Rezaei Nezhad, A. (2018). Effect of foliar application of potassium silicate on some morphological, physiological and biochemical characteristics of Alternanthera repens L. under drought stress. Journal of Crops Improvement, 20(1), 299-314. (In Persian). https://doi.org/10.22059/jci.2018.228467.1682
Mirtaleb, S. H., Niknejad, Y., & Fallah, H. (2021). Foliar spray of amino acids and potassic fertilizer improves the nutritional quality of rice. Journal of Plant Nutrition, 44(14), 2029-2041. https://doi.org/10.1080/01904167.2021.1889588
Mohammadi, N., Rasoli, F., Behtash, F., Aazami, M. A., and Panahi Tajaragh, R. (2023). The influence of arbuscular mycorrhiza fungi and seaweed extract application on some of morpho-physiological characteristics and nutrient content of Okra (Abelmoschus esculentus L.) transplants. Journal of Vegetables Sciences, 7(13), 44-60. (In Persian). https://doi.org/10.22034/iuvs.2022.559507.1228
Moltallebi, E., & Burbur, R. (2020). Investigation of the effect of organic fertilizers on the amount of chlorophyll and sugar dissolved in Carnation and its comparison with chemical fertilizers. The Iranian Journal of Plant and Biotechnology, 15(3), 61-68. (In Persian).
Moosavi, S. G. (2020). Effect of mycorrhiza and humic acid application on physiological traits, yield and water use efficiency of cotton under water deficit stress conditions. Journal of Crops Improvement, 22(1), 43-55. (In Persian). https://doi.org/10.22059/jci.2019.282993.2228
Mostafanezhad Nesheli, Z., Karimi, M., & Chalavi, V. (2025). Morphological and Physiological Response of gladiolus (Gladiolus grandiflora) to the Application of humic acid and amino acid. Journal of Agricultural Science and Sustainable Production, 34(4), 125-137. (In Persian). https://doi.org/10.22034/saps.2023.55629.3009
Mughunth, R. J., Velmurugan, S., Mohanalakshmi, M., & Vanitha, K. (2024). A review of seaweed extract's potential as a biostimulant to enhance growth and mitigate stress in horticulture crops. Scientia Horticulturae, 334, 113312. https://doi.org/10.1016/j.scienta.2024.113312
Nabi, F., Sarfaraz, A., Kama, R., Kanwal, R., & Li, H. (2025). Structure-Based Function of Humic Acid in Abiotic Stress Alleviation in Plants: A Review. Plants, 14(13), 1916. https://doi.org/10.1016/j.scienta.2018.03.015
Najafi, M., Arouiee, H., & Aminifard, M. H. (2022). Effects of humic acid and amino acid on some growth traits on super Daminus cucumber (Cucumis sativus L.) under drought stress. Journal of Horticultural Science, 35(4), 521-533. (In Persian). https://doi.org/10.22067/jhs.2021.61892.0
Niazbal, M., Kalatejari, S., Fatehi, F., & Diyanat, M. (2023). Effects of potassium silicate on some morphological and physiological traits of dichondra (Dichondra repens) cover plant grown under water deficit. Plant Productions, 45(4), 505-517. (In Persian). https://doi.org/10.22055/ppd.2023.38291.2061
Pereira, S., Monteiro, A., Moutinho‐Pereira, J., & Dinis, L. T. (2024). Silicon, an emergent strategy to lighten the effects of (a) biotic stresses on crops: A review. Journal of Agronomy and Crop Science, 210(6), e12762. https://doi.org/10.1111/jac.12762
Prasad, K., Das, A. K., Oza, M.D., Brahmbhatt, H., Siddhanta, A. K., Meena, R., Eswaran, K., Rajyaguru. M., & Ghosh, P. K. (2010). Detection and quantification of some plant growth regulators in a seaweedbased foliar spray employing a mass spectrometric technique sanschromatographic separation. Journal of Agricultural and Food Chemistry, 58, 4594–4601. https://doi.org/10.1021/jf904500e
Rahghoshahi, M., Panahi Kord Laghari, K., & Rahimi, M. (2022). Study on humic acid and algae effects on grain yield and agronomical characteristics of cumin (Cuminum cyminum L.) under drought stress conditions. Iranian Journal of Medicinal and Aromatic Plants Research, 38(2), 286-300. (In Persian). https://doi.org/10.22092/ijmapr.2022.356393.3079
Rahimi, M., & Asadi-Gharneh. H. (2019). Effect of foliar application of zinc sulfate and seaweed on qualitative and quantitative characteristics of local Kermanshah cantaloupe (Kalak). Journal of Crop Production and Processing, 8 (4), 17-28. (In Persian). https://doi.org/10.29252/jcpp.8.4.17
Rashnoo, A., Movahedi, Z., Rostami, M., and Ghabooli, M. (2020). Piriformospora indica Culture Filtrate and Biofertilizer (Nitrokara) Promote Chicory (Cichorium intybus L.) Growth and Morpho-physiological Traits in an Aeroponic System and Soil Culture. International Journal of Horticultural Science and Technology, 7(4), 353-363. https://doi.org/10.22059/ijhst.2020.292414.324
Seilsepour, M. (2022). Study of the effect of different methods of application of humic acid and aminchelate on growth characteristics, yield, and concentration of nutrients in greenhouses Cucumber var. Supersultan. Journal of Crops Improvement, 24(2), 673-684. (In Persian). https://doi.org/10.22059/jci.2021.317591.2506
Shah, I. H., Jinhui, W., Li, X., Hameed, M. K., Manzoor, M. A., Li, P., & Chang, L. (2024). Exploring the role of nitrogen and potassium in photosynthesis implications for sugar: Accumulation and translocation in horticultural crops. Scientia Horticulturae, 327, 112832. https://doi.org/10.1016/j.scienta.2023.112832
Shen, Z., Cheng, X., Li, X., Deng, X., Dong, X., Wang, S., & Pu, X. (2022). Effects of silicon application on leaf structure and physiological characteristics of Glycyrrhiza uralensis Fisch. and Glycyrrhiza inflata Bat. under salt treatment. BMC Plant Biology, 22(1), 390. https://doi.org/10.1186/s12870-022-03783-7
Shokri Fomeshkenari, M., Ghasemi, K., & Emadi, S. M. (2022). Effect of various concentrations of potassium silicate on biomass, yield and silicon distribution in tomato plants. Journal of Vegetables Sciences, 6(12), 33-46. (In Persian). https://doi.org/10.22034/iuvs.2022.543981.1187
Shukla, P. S., Shotton, K., Norman, E., Neily, W., Critchley. A. T., & Prithiviraj, B. (2018). Seaweed extract improve drought tolerance of soybean by regulating stress-response genes. AoB Plants, 10, 1–8. https://doi.org/10.1093/aobpla/plx051
Song, X., Guo, W., Xu, L., & Shi, L. (2022). Beneficial effect of humic acid urea on improving physiological characteristics and yield of maize (Zea mays L.). Acta Physiologiae Plantarum, 44(7), 72. https://doi.org/10.1007/s11738-022-03401-x
Vojodimehrabani, L., &Valizadeh Kamran, R. (2022). In-soil organic fertilizer and foliar use of salicylic acid and sea algae extract (Ascophyllum nodosum) on the growth and yield of two native pumpkin clones (Cucurbita pep). Journal of Agricultural Science and Sustainable Production, 32(3), 115-132. (In Persian). https://doi.org/10.22034/saps.2021.46415.2688
Wan, Z., Gu, R., Liang, Y., Chun, X., Zhou, H., & Zhang, W. (2025). height and light-obtaining ability of Leymus chinensis increased after a decade of warming in the typical steppe of inner Mongolia, China. Plants, 14(11), 1702. https://doi.org/10.3390/plants14111702