Abdel Latef A. A. H., Abu-Alhmad M. F., Abdelfattah K. E., & Basit, A. (2022). The combined effects of humic acid and selenium on plant growth and drought tolerance: A novel approach. Agronomy, 12(11), 2693. https://doi.org/10.3390/agronomy12112693.
Afzal, S., Sadaf, S., Akhtar, N., & Sultan, H. (2023). Seed priming-mediated induction of physio-biochemical memories in plants for abiotic stress tolerance: A review.
Plant Stress, 9, 100193.
https://doi.org/10.1016/j.stress.2023.100193
Agrawal, R., & Chen, Y. (2025). Nano-Priming and Epigenetic Memory: A Dual Approach to Enhance Abiotic Stress Resilience in Oilseed Crops. Nature Plants, 11(3), 145–162. https://doi.org/10.1038/s41477-025-01656-11
Canellas, L. P., Olivares, F. L., & Aguiar, N. O. (2024). Humic acids as biostimulants: unlocking the antioxidant system and inducing hormonal cross-talk in plants under abiotic stress. Plant and Soil, 485(1-2), 123-145. https://doi.org/10.1007/s11104-024-06567-0
El-Saadony, M. T., Saad, A. M., El-Tahan, A. M., Salem, H. M., Soliman, S. M., & Abd El-Mageed, T. A. (2024). Role of nanoparticles in enhancing crop tolerance to abiotic stress: A comprehensive review. Frontiers in Plant Science, 14, 1326776. https://doi.org/10.3389/fpls.2023.1326776
Farooq, M., Hussain, M., & Siddique, K. H. M. (2023). Drought stress in plants: An overview on implications, tolerance mechanisms and agronomic mitigation strategies. Advances in Agronomy, 178, 45-82.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185-212.
Gholami, H., Saharkhiz, M. J., Raouf Fard, F., & Ghani, A. (2022). Humic acid and hydropriming synergistically improve root growth and drought tolerance in wheat (Triticum aestivum L.) by modulating hormonal balance and photosynthetic efficiency. Agricultural Water Management, 271, 107800.
Gupta, S., Stirk, W. A., & Kulkarni, M. G. (2023). Humic acid enhances seed germination, seedling growth and antioxidant enzyme activity in maize under drought stress. South African Journal of Botany, 154, 178-184.
Halmer, P. (2005). Ornamental bedding plant industry and plug production, p. 27–38. In: McDonald, M. B. and F. Y. Kwong (eds), 3, 231-242 https://doi.org/10.1079/9780851999069.0027
Hassan, M. U., Chattha, M. U., Barbanti, L., Mahmood, A., Afzal, I., Rasheed, A., & Nawaz, M. (2023). Seed priming with selenium and salicylic acid enhances growth, physiological, and biochemical traits in oilseed rape (
Brassica napus L.) under drought stress.
Plant Physiology and Biochemistry, 201, 107850.
https://doi.org/10.1016/j.plaphy.2023.107850
Ibrahim, M. N., & Deka, S. C. (2024). Nano-engineered seed coatings for enhanced germination and crop protection: A review. ACS Agricultural Science & Technology, 4(2), 210-225.
International Seed Testing Association. (2023). International rules for seed testing. Bassersdorf, Switzerland: ISTA.
Khan, M. N., AlSolami, M. A., Basahi, R. A., & Siddiqui, M. H. (2024). Integrative Physiological Responses of Oilseed Crops to Water Deficit During the Critical Germination Stage. Plant Physiology and Biochemistry, 207, 108402. https://doi.org/10.1016/j.plaphy.2024.108402
Kotar, M. (2023). Advanced Methods in Seed Germination Analysis. Journal of Seed Science, 15(2), 45-60.
Kumar, R., Singh, A., Patel, S., & Devi, M. (2025). Seaweed-extract biopolymer seed coating improves chickpea germination and root growth under water deficit.
Scientific Reports, 15, 23456.
https://doi.org/10.1038/s41598-025-93456-8
Li, W., & Schmidt, R. R. (2025). Chromatin Remodeling and Transcriptional Dysregulation of Amylase Genes as a Key Determinant of Failed Germination under Drought Stress. The Plant Journal, 103(1), 112-125. https://doi.org/10.1111/tpj.16789
Li, W., & Schmidt, R. R. (2025). Drought-Induced Chromatin Remodeling Suppresses Key Germinative Enzymes in Brassica napus. Trends in Plant Science, 30(4), 405–420. https://doi.org/
Li, X., Chen, W., Zhang, Q., & Wang, F. (2025). Silica nanoparticles and PGPR-based seed coating enhances drought tolerance in wheat by modulating antioxidant defense and osmotic adjustment.
Journal of Cereal Science, 104, 103456.
https://doi.org/10.1016/j.jcs.2025.103456
Ma, Y., Freitas, H., & Dias, M. C. (2025). Seed coating with beneficial microbes and hydrogels: A sustainable approach to enhance crop drought tolerance. Frontiers in Plant Science, 16, 1123456.
Michel, B. E., & Kaufmann, M. R. (1973). The Osmotic Potential of Polyethylene Glycol 6000. Plant Physiology, 51(5), 914–916. https://doi.org/
Raza, A., Razzaq, A., Mehmood, S. S., & Zou, X. (2024). Omics-driven breeding strategies for drought tolerance in Brassica species. Plant Genome, 17(1), e20345.
Rose, M. T., Patti, A. F., Little, K. R., Brown, A. L., Jackson, W. R., & Cavagnaro, T. R. (2020). A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Advances in Agronomy, 164, 37-89.
Saxton, K. E., Rawls, W.J., Romberger, J. S., & Papendick, R. I. (1986). Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal, 50(4), 1031-1036.
Smith, J. A., & Müller, B. (2025). Seed coating technologies: Balancing germination speed with seedling robustness. Trends in Plant Science, 30(1), 78-92.
Soltani, E., & Maddah, V. (2024). Germin software user manual (Version 3.0). Tehran: Seed Science Press.
Wang, Y., Liu, B., Zhao, L., & Xu, M. (2025). Hydrogel-SA seed coating improves maize water-use efficiency under drought stress via stomatal regulation.
Plant Physiology and Biochemistry, 195, 78–89.
https://doi.org/10.1016/j.plaphy.2025.02.005
Zhang, H., Li, J., Wu, T., & Cai, Y. (2025). Nano-chelate seed coating enhances drought resilience in soybean by optimizing nutrient uptake and ROS scavenging.
Frontiers in Plant Science, 16, 1156789.
https://doi.org/10.3389/fpls.2025.1156789
Zhang, L., Wang, F., & Chen, H. (2024). Effects of polymer-based seed coatings on wheat germination kinetics and early seedling growth. Journal of Agricultural Science, 12(3), 45-56.
Zhang, L., Wang, J., & Zhou, G. (2025). Nanoparticle-based seed coatings enhance antioxidant defense and osmotic adjustment in drought-stressed oilseed crops. Journal of Agricultural and Food Chemistry, 73(5), 1234-1245.
Zhang, X., Liu, F., Cai, B., & Gómez, L. D. (2025). ROS Homeostasis and Metabolic Dysregulation during Seed Germination under Abiotic Stress. The Plant Cell, 37(2), koae005. https://doi.org/10.1093/plcell/koae005
Zhang, X., Liu, F., Cai, B., & Gómez, L. D. (2025). ROS Homeostasis and Metabolic Dysregulation during Seed Germination under Abiotic Stress. The Plant Cell, 37(2), koae005. https://doi.org/10.1093/plcell/koae005
Zhang, Y., Li, Y., Wang, Y., Liu, H., & Wang, S. (2023). Humic acid and hydropriming synergistically improve drought tolerance in rapeseed (Brassica napus L.) by modulating physiological and molecular responses. Plant Physiology and Biochemistry, 194, 146-158. https://doi.org