ارزیابی برخی از ارقام کنجد (Sesamum indicum L.) با استفاده از روش های آماری چندمتغیره تحت تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه ایلام، ایلام. ایران

2 گروه زراعت، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

10.22034/plant.2025.144982.1182

چکیده

مقدمه: در بسیاری از مناطق خشک، نیاز به شناسایی ژنوتیپ‌های گیاهی می باشد که بتوانند با آبیاری محدود، عملکرد را حفظ یا افزایش دهد. کنجد در محیط‌های خشک و نیمه‌خشک که بارش نامنظم است و منابع آبی محدود می‌باشد، محصول روغنی مهمی است. ارزیابی تنوع ژنتیکی در پاسخ به خشکی در میان رقم‌های کنجد می‌تواند کاندیداهایی با عملکرد پایدار در تنش خشکی را نشان دهد و استراتژی‌های به‌نژادی و مدیریت زراعی را مشخص کند. این مطالعه به غربالگری رقم‌های کنجد برای تحمل خشکی می‌پردازد و روابط بین صفات رویشی، مؤلفه‌های عملکرد و عملکرد نهایی دانه را تحت رژیم‌های آبیاری روشن می‌سازد.
مواد و روش‌ها: با توجه به اهمیت شناسایی ارقام متحمل کنجد برای مناطق خشک و نیمه‌خشک، این پژوهش با هدف غربالگری رقم‌های مختلف کنجد تحت تنش خشکی در سال ۱۴۰۰ در شهرستان دره‌شهر استان ایلام اجرا گردید. آزمایش به‌صورت کرت‌های خردشده در قالب طرح پایه بلوک‌های کامل تصادفی با سه تکرار انجام شد. تیمارهای آزمایشی شامل دو سطح آبیاری تنش خشکی و بدون تنش(شاهد) به‌عنوان فاکتور اصلی و شش رقم کنجد شامل اولتان، داراب 1، رقم بومی، یلووایت، هلیل و رقم آمریکایی به‌عنوان فاکتور فرعی بودند.
یافته‌ها:  نتایج نشان داد که تنش خشکی اثر معنی‌داری بر ارتفاع بوته، ارتفاع اولین گره، تعداد دانه در کپسول، وزن خشک کل و عملکرد دانه داشت. رقم اولتان بیشترین (۹۵ گرم در مترمربع) و رقم بومی کمترین (62 گرم در مترمربع) عملکرد دانه را داشتند. اثر متقابل رقم و تنش خشکی بر تعداد دانه در کپسول نیز معنی‌دار بود، به‌طوری‌که بیشترین مقدار در رقم اولتان (70 عدد) در شرایط بدون تنش مشاهده شد. همچنین نتایج نشان داد که بین تعداد برگ با ارتفاع بوته (r=0.94, P≤0.01) و وزن خشک کل (r=0.87, p≤0.05) بیشترین همبستگی‌های مثبت و قوی وجود داشت. همچنین عملکرد دانه با ارتفاع گره (r=0.64, P>0.05)، وزن خشک کل (r=0.72, P>0.05) و تعداد برگ در گیاه (r=0.73, P>0.05) دارای همبستگی نسبتاً قوی و مثبت ولی غیرمعنی دار داشت. در تجزیه به مؤلفه‌های اصلی (میانگین دو محیط شاهد و تنش)، دو مؤلفه اصلی اول، 90/96 درصد از تغییرات موجود را توجیه نموده و همچنین براساس نتایج خوشه‌بندی نیز رقم‌ها در شرایط تنش و بدون تنش، سه گروه متمایز شناسایی شد: گروه اول شامل ارقام محلی و آمریکایی (مهاجر)، گروه دوم شامل ارقام یلووایت، اولتان و داراب 1، و گروه سوم نیز شامل رقم هلیل با عملکرد نسبتاً مطلوب بود.
نتیجه‌گیری: به‌طور کلی، نتایج این پژوهش نشان داد که بین رقم‌های کنجد تفاوت های قابل‌توجهی در پاسخ به تنش خشکی وجود داشت. چنین ارقامی می‌توانند در برنامه‌های اصلاحی و زراعی مناطق کم‌آب مورد استفاده قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of some sesame cultivars using multivariate statistical methods under drought stress

نویسندگان [English]

  • Younes Ghorishi Nasab 1
  • Ali Arminian 1
  • Arash Fazeli 1
  • Amin Fathi 2
1 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Ilam University, Ilam, Iran
2 Department of Agronomy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
چکیده [English]

Introduction: The increasing scarcity of water in many regions has intensified the need to identify crop genotypes that can sustain yield under limited irrigation. Sesame is an important oilseed crop in arid and semi-arid environments, where rainfall is irregular and water resources are constrained. Evaluating genetic variation in drought response among sesame cultivars can reveal candidates with stable performance under water stress, informing breeding strategies and crop management. This study aims to screen a diverse set of sesame cultivars for drought tolerance and to elucidate the relationships between vegetative vigor, yield components, and final grain yield under contrasting irrigation regimes.
Materials and Methods: This experiment was conducted at Darreh Shahr County, Ilam Province in 2021. A split-plot design in a randomized complete block framework with three replications was used. The main plots included two irrigation levels (drought stress and well-watered control), and within plots six sesame cultivars—Ultan, Darab 1, a native cultivar, Yellow White, Halil, and an American cultivar. Measurements included plant height, height of the first node, number of seeds per capsule, total dry weight, and grain yield (g/m²). Data analysis comprised ANOVA for main effects and interactions, correlation analysis among traits, principal component analysis (PCA) to summarize variation, and a cluster analysis to group cultivars.
Results: Drought stress significantly reduced plant height, the height of the first node, the number of seeds per capsule, and total dry weight, while grain yield differed among cultivars under drought; Ultan achieved the highest yield (~95 g/m²) and the native cultivar the lowest (~62 g/m²). The cultivar-by-stress interaction was significant for the number of seeds per capsule, with Ultan producing the highest count (~70) under non-stress conditions. Strong positive correlations were detected between the number of leaves and plant height (r = 0.94, P ≤ 0.01) and between leaves and total dry weight (r = 0.87, P ≤ 0.05). Grain yield showed relatively strong but non-significant correlations with node height (r = 0.64, P > 0.05), total dry weight (r = 0.72, P > 0.05), and the number of leaves per plant (r = 0.73, P > 0.05). PCA indicated that the first two components explained about 96.9% of the total variation. Cluster analysis revealed three distinct groups of cultivars under both stress and non-stress conditions: Group 1 consisted of native and American cultivars, Group 2 included Ultan, Yellow White, and Darab 1, and Group 3 included Halil, which showed relatively favorable yield.
Conclusion: There is substantial genetic variation in sesame responses to drought; certain cultivars such as Ultan, Yellow White, Darab 1, and Halil show potential for use in breeding and cropping programs in water-scarce regions.

کلیدواژه‌ها [English]

  • Multivariate analysis
  • Clustering
  • performance
  • Principal components
  • Correlation
Arminian, A., Houshmand, S., & Shiran, B. (2013). Investigating genetic diversity and classification of diverse wheat genotypes using multivariate analysis methods. EJCP: Electronic Journal of Crop Production, 5(4), 105-120. (In Persian).
Askari, A., Zabet, M., Ghaderi, M. G., Samadzadeh, A., R., & Shorvazdi, A. (2016). Choose the most important traits affecting on yield of some sesame genotypes (Sesamum indicum L.) in normal and stress conditions. Journal of Crop Breeding, 8(18), 78-87 .(In Persian). https://doi.org/ 10.29252/jcb.8.18.78
Ayed, S., Othmani, A., Bouhaouel, I., & Teixeira da Silva, J. A. (2021). Multi-environment screening of durum wheat genotypes for drought tolerance in changing climatic events. Agronomy, 11(5), 875. https://doi.org/10.3390/agronomy11050875
Chen, W., Wang, L., & Guo, C. (2024). Synergistic regulation of water-saving cultivation and dryland farming and its sustainable development pathways. Geographical Research Bulletin, 3, 416- 437.‏ https://doi.org/10.50908/grb.3.0_416
Esmaeili, A. (2024). The effect of boron element on quantitative and agrophysiological traits of sesame plant under drought stress conditions. Master's thesis, Ilam University, 96 p. (In Persian).
Eyni, H., Mirzaei Heydari, M., & Fathi, A. (2023). Investigation of the application of urea fertilizer, mycorrhiza, and foliar application of humic acid on quantitative and qualitative properties of canola. Crop Science Research in Arid Regions, 4(2), 405-420. (In Persian) https://doi.org/10.22034/csrar.2022.333487.1209
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., & Huang, J. (2017). Crop production under drought and heat stress: plant responses and management options. Frontiers in plant science, 8, 1147. ‏https://doi.org/10.3389/fpls.2017.01147
Fang, S., Yang, H., Tao, Y., Shi, J., & Wang, M. (2024). Sesame (Sesamum indicum L.) growth properties and yield attributes are associated with potassium level in response to drought stress. Journal of Plant Nutrition, 47(9), 1364- 1377.‏ https://doi.org/10.1080/01904167.2024.2308194
FAO. (2023). Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#compare.
Farooq, M., Gogoi, N., Barthakur, S., Baroowa, B., Bharadwaj, N., Alghamdi, S. S., & Siddique, K. H. (2017). Drought stress in grain legumes during reproduction and grain filling. Journal of Agronomy and Crop Science, 203(2), 81-102. ‏ https://doi.org/10.1111/jac.12169
Farooq, M., Wahid, A., Kobayashi, N. S. M. A., Fujita, D. B. S. M. A., & Basra, S. M. (2009). Plant drought stress: effects, mechanisms and management. In Sustainable agriculture (pp. 153-188). Dordrecht: Springer Netherlands. ‏
Fathi, A., Maleki, A., & Naseri, R. (2024d). A review of the effects of drought stress on plants and some effective strategies in crop management. Journal of Plant Environmental Physiology, 19(1), 121-145. ‏https://doi.org/10.71890/iper.2023.984356
Fathi, A., Shiade, S. R. G., Ait-El-Mokhtar, M., & Rajput, V. D. (2024a). Crop Photosynthesis under Climate Change. ‏ In Handbook of Photosynthesis (4th ed.). Taylor & Francis, Boca Raton, USA. pp 826. https://doi.org/10.1201/b22922
Fathi, A., Shiade, S. R. G., Ali, B., & Zeidali, E. (2024b). Plant Growth, Development, and Photosynthesis in Cereals under Salt Stress. ‏ In Handbook of Photosynthesis (4th ed.). Taylor & Francis, Boca Raton, USA. pp 826. https://doi.org/10.1201/b22922
Fathi, A., Shiade, S. R. G., Kianersi, F., Altaf, M. A., Amiri, E., & Nabati, E. (2024c). Photosynthesis in Cereals under Drought Stress. ‏ ‏In Handbook of Photosynthesis (4th ed.). Taylor & Francis, Boca Raton, USA. pp 826. https://doi.org/10.1201/b22922
Fathi, A., Shiade, S. R. G., Saleem, A., Shohani, F., Fazeli, A., Riaz, A., ... & Rahimi, M. (2025). Reactive Oxygen Species (ROS) and Antioxidant Systems in Enhancing Plant Resilience Against Abiotic Stress. International Journal of Agronomy, 2025(1), 8834883. ‏ https://doi.org/10.1155/ioa/8834883
Fereidooni, L., Tahmasebi, Z., Kahrizi, D., Safari, H., & Arminian, A. (2023). Evaluation of Drought Resistance of Camelina (Camelina sativa L.) Doubled Haploid Lines in the Climate Conditions of Kermanshah Province. Agrotechniques in Industrial Crops. 4(3), 134-146. (In Persian) https://doi.org/10.22126/ATIC.2023.9570.1111
Fernandez, G. C. J. (1993). Effective selection criteria for assessing plant stress tolerance. Adaptation of food crops to temperature and water stress: proceedings of an international symposium, Taipei, Taiwan, 13-18 August 1992.
Fischer, R. A., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5), 897-912. https://doi.org/10.1071/AR9780897
Gavuzzi, P., F. Rizza, M. Palumbo, R. G. Campaline, G. L. Ricciardi., & B. Borghi, (1997). Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 77, 523-531. https://doi:10.4141/P96-130.
Ghadirnezhad Shiade, S. R., Fathi, A., Taghavi Ghasemkheili, F., Amiri, E., & Pessarakli, M. (2023). Plants’ responses under drought stress conditions: Effects of strategic management approaches-A review. Journal of plant Nutrition, 46(9), 2198- 2230. ‏https://doi.org/10.1080/01904167.2022.2105720
Ghadirnezhad Shiade, S. R., Rahimi, R., Zand-Silakhoor, A., Fathi, A., Fazeli, A., Radicetti, E., & Mancinelli, R. (2024). Enhancing seed germination under abiotic stress: Exploring the potential of nano-fertilization. Journal of Soil Science and Plant Nutrition, 24(3), 5319-5341. ‏https://doi.org/10.1007/s42729-024-01910-x
Ghasemipanah, M., Aminian, R., Gholamhoseini, M., & Habibzadeh, F. (2020). Sesame (Sesamum indicum L.) cultivars response to full and low irrigation regimes. Iranian Journal of Field Crop Science, 51(3), 151-163. (In Persian) https://doi.org/.22059/ijfcs.2019.250447.654439
Golestani, M., & Pakniyat, H. (2007). Evaluation of drought tolerance indices in sesame lines. ‏Journal of Agricultural Science and Technology (JAST), 11, 141–150. (In Persian). https://doi.org/20.1001.1.22518517.1386.11.41.12.9
Hafeez, A., Ali, B., Javed, M. A., Saleem, A., Fatima, M., Fathi, A., & Soudy, F. A. (2023). Plant breeding for harmony between sustainable agriculture, the environment, and global food security: an era of genomics‐assisted breeding. Planta, 258(5), 97. https://doi.org/10.1007/s00425-023-04252-7
Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International journal of molecular sciences, 14(5), 9643- 9684.‏ https://doi.org/10.3390/ijms14059643
Jahan, M., & Nassiri-Mahallati, M. (2022). Modeling the response of sesame (Sesamum indicum L.) growth and development to climate change under deficit irrigation in a semi-arid region. PLoS Climate, 1(6), e0000003. ‏ https://doi.org/10.1371/journal.pclm.0000003
Karimizadeh, R., Sofalion, O., & Mohammaddoust Chamanabad, H. (2020). Evaluation of stress tolerance in durum wheat lines based on stress tolerance indices. Journal of Crop Breeding, 12(34), 185-198. (In Persian). https://doi.org/10.29252/jcb.12.34.185
Marashi, S. H., Seifi, A., Nabati, J., Hasanfard, A., & Yousefi, A. (2023). Evaluation of genetic diversity and classification of sesame (Sesamum indicum L.) genotypes in Mashhad condition. Iranian Journal of Field Crop Science, 54(1), 197-212. https://doi.org/10.22059/ijfcs.2022.347511.654933
Mathur, R. K., Sujatha, M., Bera, S. K., Rai, P. K., Babu, B. K., Suresh, K., & Singh, V. V. (2023). Oilseeds and Oil Palm. Trajectory of 75 years of Indian Agriculture after Independence. Trajectory of 75 years of Indian Agriculture after Independence. Springer, pp.231-264. https://doi.org/10.1007/978-981-19-7997-2_10
Mirzaei Heydari, M., Fathi, A., & Atashpikar, R. (2024). The effect of chemical and biofertilizer on the nutrient concentration of root, shoot and seed of bean (Phaseolus vulgaris L.) under drought stress. Crop Science Research in Arid Regions, 5(3), 539- 554.‏ (In Persian) https://doi.org/10.22034/csrar.2023.334186.1212
Mohammadi, S. A., & Prasanna, B. M. (2003). Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop science, 43(4), 1235- 1248. ‏
Mourad, K., Othman, Y. I. M., & Kandeel, D. M. (2025). Assessing the drought tolerance of some sesame genotypes using agro-morphological, physiological, and drought tolerance indices. BMC Plant Biol, 25, 352. https://doi.org/10.1186/s12870-025-06235-0
Muhammad Aslam, M., Waseem, M., Jakada, B. H., Okal, E. J., Lei, Z., Saqib, H. S. A., & Zhang, Q. (2022). Mechanisms of abscisic acid-mediated drought stress responses in plants. International journal of molecular sciences, 23(3), 1084. ‏ https://doi.org/10.3390/ijms23031084
Nadeem, F., Rehman, A., Ullah, A., Farooq, M., & Siddique, K. H. (2024). Managing drought in semi-arid Regions through improved varieties and choice of species. Managing Soil Drought. ‏ Lal, R. (Ed.). CRC Press: Boca Raton, FL, USA.‏ https://doi.org/10.1201/b23132
Oboulbiga, E. B., Douamba, Z., Compaoré-Sérémé, D., Semporé, J. N., Dabo, R., Semde, Z., ... & Dicko, M. H. (2023). Physicochemical, potential nutritional, antioxidant and health properties of sesame seed oil: a review. Frontiers in nutrition, 10, 1127926. https://doi.org/10.3389/fnut.2023.1127926
Omer, H. A., Ahmed, S. M., Abdel-Magid, S. S., Bakry, B. A., El-Karamany, M. F., & El-Sabaawy, E. H. (2019). Nutritional impact of partial or complete replacement of soybean meal by sesame (Sesamum indicum) meal in lamb’s rations. Bulletin of the National Research Centre, 43(1), 98. ‏ https://doi.org/10.1186/s42269-019-0140-8
Ramazani, S. H. R., & Mansouri, S. (2017). Relationships of quantitative traits in advanced lines of sesame. Journal of Crop Breeding, 9, 58-66. (In Persian) https://doi.org/10.29252/jcb.9.23.58
Ranjithkumar, G., Bisen, R., & Kumar, K. (2022). Genetic variability studies for yield and its attributing traits in dark brown sesame (Sesamum indicum). International Journal of Plant and Soil Science, 34(8), 43-49. https://doi.org/ 10.9734/ijpss/2022/v34i830897
Rosielle, A. A., & Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non‐stress environment. Crop Science, 21(6), 943-946. https://doi.org/10.2135/cropsci1981.0011183X002100060033x
Saed-Moucheshi, A., Pessarakli, M., Mozafari, A. A., Sohrabi, F., Moradi, M., & Marvasti, F. B. (2022). Screening barley varieties tolerant to drought stress based on tolerance indices. Journal of Plant Nutrition, 45(5), 739- 750.‏ https://doi.org/ https://doi.org/ 10.1080/01904167.2021.1963773
Sofi, P. A., Rehman, K., Ara, A., & Gull, M. 2018. Stress tolerance indices based on yield, phenology, and biomass partitioning: a review. Agricultural Reviews, 39(4), 292- 299.‏ https://doi.org/10.18805/ag.R-1822
Srikanth, K., & Ghodke, M. K. (2022). Genetic diversity studies in sesame (Sesamum indicum L.) genotypes. The Pharma Innovation Journal, 1(3), 1486-1491.‏
Wahab, A., Abdi, G., Saleem, M. H., Ali, B., Ullah, S., Shah, W., & Marc, R. A. (2022). Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants, 11(13), 1620. ‏https://doi.org/10.3390/plants11131620
Yol, E., & Uzun, B. (2012). Geographical patterns of sesame accessions grown under Mediterranean environmental conditions, and establishment of a core collection. Crop science, 52(5), 2206-2214.‏ https://doi.org/10.2135/cropsci2011.07.0355
Zamani, Z., Zeidali, E., Alizadeh, H. A., & Fathi, A. (2023). Effect of drought stress and nitrogen chemical fertilizer on root properties and yield in three quinoa cultivars (Chenopodium quinoa Willd). Crop Science Research in Arid Regions, 5(2), 487-500. (In Persian). https://doi.org/10.22034/csrar.2023.353966.1261