Amiri, S., Kazemitabaar, S., Ranjbar, G. and Azadbakht, M. 2010. The effect of trifluralin and colchicine treatments on morphological characteristics of jimsonweed (Datura Stramonium L.). Trakia Journal of Sciences, 8: 47-61.
Bandou, H., Rodriguez-Quijano, M., Carrillo, J., Branlard, G., Zaharieva, M. and Monneveux, P. 2009. Morphological and genetic variation in Aegilops geniculata from Algeria. Plant Systematics and Evolution, 277: 85-97.
Benavente, E., Alix, K., Dusautoir, J.C., Orellana, J. and David, J. 2001. Early evolution of the chromosomal structure of Triticum turgidum–Aegilops ovata amphiploids carrying and lacking the Ph1 gene. Theoretical and Applied Genetics, 103: 1123-1128.
David, J.L., Benavente, E., Bres-Patry, C., Dusautoir, J.C. and Echaide, M. 2004. Are neopolyploids a likely route for a transgene walk to the wild? The Aegilops ovata× Triticum turgidum durum case. Biological Journal of the Linnean Society, 82: 503-510.
Fakhri, Z., Mirzaghaderi, G., Ahmadian, S. and Mason, A.S. 2016. Unreduced gamete formation in wheat × Aegilops spp. hybrids is genotype specific and prevented by shared homologous subgenomes. Plant Cell Reports, 35: 1143-1154.
Friebe, B.R., Tuleen, N.A. and Gill, B.S. 1999. Development and identification of a complete set of Triticum aestivum-Aegilops geniculata chromosome addition lines. Genome, 42: 374-380.
Jacot, Y., Ammann, K., Rufener, P., Mazyad, A., Chueca, C., David, J., Gressei, J., Loureiroz, H.W. and Bernavente, E. 2004. and Wild Relatives, a European Union Research Programme. Introgression from genetically modified plants into wild relatives: 63.
Jauhar, P.P. and Chibbar, R.N. 1999. Chromosome-mediated and direct gene transfers in wheat. Genome, 42: 570-583.
Kuraparthy, V., Sood, S., Dhaliwal, H., Chhuneja, P. and Gill, B.S. 2007. Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theoretical and Applied Genetics, 114: 285-294.
Kwiatek, M.T., Wiśniewska, H., Ślusarkiewicz-Jarzina, A., Majka, J., Majka, M., Belter, J. and Pudelska, H. 2017. Gametocidal factor transferred from Aegilops geniculata Roth can be adapted for large-scale chromosome manipulations in cereals. Frontiers in Plant Science, 8: 409.
Kynast, R., Friebe, B. and Gill, B. 2000. Fate of multicentric and ring chromosomes induced by a new gametocidal factor located on chromosome 4Mg of Aegilops geniculata. Chromosome Research, 8: 133-139.
Liu, W., Rouse, M., Friebe, B., Jin, Y., Gill, B. and Pumphrey, M.O. 2011. Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Research, 19: 669-682.
Loureiro, I., Escorial, C., García-Baudin, J.M. and Chueca, C. 2009. Hybridization, fertility and herbicide resistance of hybrids between wheat and Aegilops biuncialis. Agronomy for Sustainable Development, 29: 237-245.
Loureiro, I., Escorial, M.C., Garcia-Baudin, J.M. and Chueca, M.C. 2007. Hybridization between wheat (Triticum aestivum) and the wild species Aegilops geniculata and A. biuncialis under experimental field conditions. Agriculture, Ecosystems and Environment, 120: 384-390.
Loureiro, I., Escorial, M.C., García-Baudín, J.M. and Chueca, M.C. 2006. Evidence of natural hybridization between Aegilops geniculata and wheat under field conditions in Central Spain. Environmental Biosafety Research, 5: 105-109.
Mirzaghaderi, G., Abdolmalaki, Z., Zohouri, M., Moradi, Z. and Mason, A.S. 2017. Dynamic nucleolar activity in wheat× Aegilops hybrids: evidence of C-genome dominance. Plant Cell Reports, 36: 1277-1285.
Mirzaghaderi, G. and Fathi, N. 2015. Unreduced gamete formation in wheat: Aegilops triuncialis interspecific hybrids leads to spontaneous complete and partial amphiploids. Euphytica, 206: 67-75.
Molnár, I., Gáspár, L., Sárvári, É., Dulai, S., Hoffmann, B., Molnár-Láng, M. and Galiba, G. 2004. Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Functional Plant Biology, 31: 1149-1159.
Ozkan, H. and Feldman, M. 2001. Genotypic variation in tetraploid wheat affecting homoeologous pairing in hybrids with Aegilops peregrina. Genome, 44: 1000-1006.
Peterson, R., Slovin, J.P. and Chen, C. 2010. A simplified method for differential staining of aborted and non-aborted pollen grains. International Journal of Plant Biology, 1: e13.
Rawat, N., Tiwari, V.K., Singh, N., Randhawa, G.S., Singh, K., Chhuneja, P. and Dhaliwal, H.S. 2009. Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genetic Resources and Crop Evolution, 56: 53-64.
Rosegrant, M. and Agcaoili, M. 2010. Global food demand, supply, and price prospects to 2010. International Food Policy Research Institute, Washington, DC USA.
Schneider, A., Molnár, I. and Molnár-Láng, M. 2008. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica, 163: 1-19.
Silkova, O., Adonina, I., Krivosheina, E., Shchapova, A. and Shumny, V. 2013. Chromosome pairing in meiosis of partially fertile wheat/rye hybrids. Plant Reproduction, 26: 33-41.
Silkova, O., Loginova, D., Volodina, E., Ivanova, Y.N., Bondarevich, E., Solovey, L., Sycheva, E. and Dubovets, N. 2018. Development and Characterization of Wheat-Rye Hybrids Produced by Meiotic Restitution. Russian Journal of Genetics, 54: 1266-1276.
Tang, Z., Yang, Z. and Fu, S. 2014. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119. 2, pTa-553, pTa71, CCS1, and pAWRC1 for FISH analysis. Journal of Applied Genetics, 55: 313-318.
Tayalé, A. and Parisod, C. 2013. Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenetic and Genome Research, 140: 79-96.
Van-Slageren, M. 1994. Wild wheats: a monograph of Aegilops L and Amblyopyrum (Jaub and Spach) Eig (Poaceae): a revision of all taxa closely related to wheat, excluding wild Triticum species, with notes on other genera in the tribe Triticeae, especially Triticum. Wageningen Agricultural University, Wageningen, The Netherlands.
Van Slageren, M. 1994. Wild wheats: a monograph of Aegilops L. and Ambylopyrum. Jaub. & Spach. Eig (Poaceae). Wageningen Agricultural University and ICARDA.
Wang, Y., Wang, C., Zhang, H., Li, H., Liu, X. and Ji, W. 2015. Identification and evaluation of disease resistance and HMW-GS composition of Aegilops geniculata Roth. Genetic Resources and Crop Evolution, 62: 1085-1093.
Wang, Z., Zemetra, R.S., Hansen, J. and Mallory-Smith, C.A. 2001. The fertility of wheat× jointed goatgrass hybrid and its backcross progenies. Weed Science, 49: 340-345.
Wu, Y., Zhang, C., Liu, C., Shuxin, R. and Yan, Z. 1998. Breeding technology of alloplasmic wheat. Science in China Series C: Life Sciences, 41: 449-458.
Yi, Y., Zheng, K., Ning, S., Zhao, L., Xu, K., Hao, M., Zhang, L., Yuan, Z. and Liu, D. 2019. The karyotype of Aegilops geniculata and its use to identify both addition and substitution lines of wheat. Molecular cytogenetics, 12: 15.
Zaharieva, M., Gaulin, E., Havaux, M., Acevedo, E. and Monneveux, P. 2001a. Drought and heat responses in the wild Wheat Relative Aegilops geniculata Roth. Crop Science, 41: 1321-1329.
Zaharieva, M. and Monneveux, P. 2006. Spontaneous hybridization between bread wheat (Triticum aestivum L.) and its wild relatives in Europe. Crop Science, 46: 512-527.
Zaharieva, M., Monneveux, P., Henry, M., Rivoal, R., Valkoun, J. and Nachit, M. 2001b. Evaluation of a collection of wild wheat relative Aegilops geniculata Roth and identification of potential sources for useful traits, Wheat in a Global Environment. Springer, pp. 739-746.
Zhang, L.Q., Yen, Y., Zheng, Y.L. and Liu, D.C. 2007. Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sexual Plant Reproduction, 20: 159-166.