Alet, A., Sanchez, D. and Cuevas, J. 2012. New insights into the role of spermin in A. thaliana under longsalt stress. Plant Science, 182: 94-100.
Bailey, M., Srivastava, A. and Conti, L. 2015. Stability of (SUMO) proteases OTS1 modulates salicylic acid signalling and SUMO1/2 conjugation in Arabidopsis thaliana. experimental botany, 67(1): 353-363.
Barak, S., Tobin, E.M., Andronis, C., Sugano, S. and Green, R.M. 2000. All in good time: The Arabidopsis circadian clock. Trends in Plant Science, 5(12): 517-522.
Ben Rejeb, K., Benzarti, M. and Debez, A. 2015. NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in A. thaliana. plant physiology, 174: 5-15.
Chawla, S., Jain, S. and Jain, V. 2013. Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of (O. sativa L.). Plant Biochemistry and Biotechnology, 22(1): 27-34.
Chen, H., Su, C. and Lin, C. 2010. Expression of potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis. plant physiology, 167(10): 838-847.
Chen, L., Ren, F. and Zhong, H. 2010. Identification and expression analysis of genes in response to high-salinity and drought stresses in Brassica napus. Acta Biochimica et Biophysica Sinica, 42(2): 154-164.
Chen, X.S., Lu, L., Mayer, K.S., Scalf, M., Qian, S.M. and Lomax, A. 2016. Powerdress interacts with HDA9 to promote aging in Arabidopsis. eLife, 5: e17214.
Choi, W.G., Toyota, M. and Kim, S.H. 2014. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proceedings of the National Academy of Sciences, 111(17): 6497-6502.
Droillard, M.J., Boudsocq, M., Barbier-Brygoo, H. and Lauriere, C. 2004. Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of A. thaliana: activation by hypoosmolarity and negative role in hyperosmolarity tolerance. FEBS Letters, 574(1-3): 42-48.
Ferreira, L.J., Azevedo, V., Maroco, J., Oliveira, M.M. and Santos, A.P. 2015. Salt tolerant and sensitive rice varieties display differential methylome flexibility under salt stress. PLoS ONE, 10(5), e124060.
Fujita, Y., Fujita, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2011.ABA-mediated transcriptional regulation in response to osmotic stress in plants. plant research, 124(4): 509-525.
Gilmartin, P.M., Sarokin, L., Memelink, J. and Chua, N.H. 1990. Molecular light switches for plant genes. Plant Cell, 2(5): 369-378.
Goldsbrough, A.P., Albrecht, H. and Stratford, R. 1993. Salicylic acid-inducible binding of a tobacco nuclear protein to a sequence which is conserved among stress-inducible genes. The Plant Journal, 3(4): 563-571.
Heidari, S., Heidari, P. and Heidari, B. 2021. A survey of evolutionary changes of fatty acids and storage proteins in three Brassica species by comparative genomics method. NCMBJ, 12(45): 27-38. (In Persian).
Heidari, Sh. and Heidari, P. 2022. Evolutionary mechanisms underlying secondary metabolite diversity of the three Brassica species using insilico comparative analysis of the related genes. Crop biotechnology, 10(4): 23-36. (In Persian).
Heidari, Sh., Heidari, P., Azizinezhad, R., Etminan, A. and Khosroshahli, M. 2020. Assessment of genetic variability, heritability and genetic advance for agro-morphological and some in-vitro related-traits in durum wheat. Bulgarian Journal of Agricultural Science, 26(1): 120-127.
Hieng, B., Ugrinoviè, K., Sustar-Vozliè, J. and Kidriè, M. 2004. Different classes of proteases are involved in the response to drought of Phaseolus vulgaris L. cultivars differing in sensitivity. plant physiology, 161(5): 519-530.
Islam, M.O., Kato, H., Shima, S., Tezuka, D., Matsui, H. and Imai. R. 2019. Functional identification of a rice trehalase gene involved in salt stress tolerance. Gene, 685: 42-49.
Jiang, D. and Berger, F. 2017. DNA replication–coupled histone modification maintains Polycomb gene silencing in plants. Science, 35: 1146-1149.
Kaur, A., Pati, P.K., Pati, A.M. and Nagpal, A.K. 2017. In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of A.is thaliana and O. sativa. PloS one, 12(9): e0184523.
Kerr, T.C. 2018. Ectopic expression of two AREB/ABF orthologs increases drought tolerance in cotton. Plant, Cell and Environment, 41: 898-907.
Khodary, S.E.A. 2004. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Agriculture and Biology, 6: 5-8.
Kubala, S., Wojtyla, L., Quinet, M., Lechowska, K., Lutts, S. and Garnczarska, M. 2015. Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of B. napus germination under salinity stress. plant physiology, 183: 1-12.
Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P. and Rombauts, S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic acids research, 30(1): 325-7.
Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10(8): 1391-406.
Luo, M., Wang, Y.Y., Liu, X., Yang, S., Lu, Q., Cui, Y. and Wu, K. 2012. HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. Experimental Botany, 63(8): 3297-3306.
Ma, L., Zhang, H. and Sun, L. 2012. NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. Experimental Botany, 63(1): 305-317.
Masoudi Nejad, A., Tonomura, K. and Kawashima, Sh. 2006. EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic acids research, 34: 459-462.
McGinnis, S. and Madden, T.L. 2004. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic acids research, 32: 20-25.
Miller, G., Schlauch, K. and Tam, R. 2009. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Science Signaling, 2(84): 1-11.
Mizoguchi, T., Irie, K., Hirayama, T., Hayashida, N., Yamaguchi-Shinozaki, K. and Matsumoto, K. 1996. A gene encoding a MAPKKK is induced simultaneously with genes for a MAPK and an S6 RP kinase by touch, cold and water stress in A. thaliana. Proceedings of the National Academy of Sciences, 93(2):765-769.
Munnik, T., Ligterink, W., Calderini, O. and Hirt, H. 1999. Distinct osmosensing protein kinase pathways are involved in signaling moderate and severe hyperosmos stress. The Plant Journal, 20(4): 381-388.
Ramsak, Z., Baebler, S. and Rotter, A. 2014. GoMapMan: integration, consolidation and visualization of plant gene annotations within the MapMan ontology. Nucleic acids research, 42: 1167-1175.
Reese, M.G. 2001. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Computational Chemistry, 26(1): 51-56.
Romualdi, C., Bortoluzzi, S., d’ Alessi, F. and Danieli, G.A. 2003. IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiological Genomics, 12: 159-162.
Roy, S. 2016. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant signaling and behavior, 11(1): e1117723.
Schaffer, M.A. and Fischer, R.L. 1990. Transcriptional activation by heat and cold of a thiol protease gene in tomato. plant physiology, 93(4): 1486-1491.
Seemann, J.R. and Critchley, C. 1985. Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta, 164(2): 151-162.
Tester, M. and Davenport, R. 2003. Na+ Tolerance in Plants. Annals of Botany, 91(5): 503-527.
Ullah, F., Xu, Q., Zhao, Y. and Zhou, D.X. 2021. Histone deacetylase HDA710 controls salt tolerance by regulating ABA signaling in rice. Integrative Plant Biology, 63(3): 451-467.
Vassilev, D., Leunissen, J. and Atanassov, A. 2005. Application of bioinformatics in plant breeding. Biotechnology and Biotechnological Equipment, 19: 139-152.
Wang, J., Ding, H., Zhang, A., Ma, F., Cao, J. and Jiang, M. 2010. A novel MAPK gene in maize, ZmMPK3, is involved in response to diverse environmental cues. Integrative Plant Biology, 52(5): 442-452.
Wang, W., Huang, F., Qin, Q., Zhao, X. and Fu, B. 2015. Comparative analysis of DNA methylation changes in two rice genotypes under salt stress. Biophysical Research Communications, 465(4): 790-796.
Wilczek, C., Chayka, O., Plachetka, A. and Klempnauer, K.H. 2009. Myb-induced chromatin remodeling at a dual enhancer/promoter element involves non-coding rna transcription and is disrupted by oncogenic mutations of v-myb. Biological Chemistry, 284(51): 35314-35324.
Wu, Y. and Cosgrove, D.J. 2000. Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. Experimental Botany, 51(350): 1543-1553.
Xiang, Y., Lu, Y.H., Song, M., Wang, Y., Xu, W., Wu, L. and Ma, Z. 2015. Overexpression of a T. aestivum (TaCRT1) improves salinity tolerance in Tobacco. PLOS ONE, 10(10): e0140591.
Xiong, L. and Yang, Y. 2003. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible MAPK. The Plant Cell, 15(3): 745-759.
Yamauchi, T., Yoshioka, M., Fukazawa, A., Mori, H., Nishizawa, N.K., Tsutsumi, N., Yoshioka, H. and Nakazono, M. 2017. An NADPH Oxidase RBOH Functions in Rice Roots during Lysigenous Aerenchyma Formation under Oxygen-Deficient Conditions. The Plant cell, 29(4): 775-790.
Yeo, A.R., Caporn, S.M. and Flowers, T.J. 1985.The effect of salinity upon photosynthesis in rice gas exchange by individual leaves in relation to their salt content. Experimental Botany, 36(8): 1240-1248.
Zhong, X., Zhang, H., Zhao, Y., Sun, Q., Hu, Y. and Peng, H. 2013. The rice NAD (+)-dependent histone deacetylase OsSRT1 targets preferentially to stress- and metabolism-related genes and transposable elements. PLOS ONE, 8: e66807.
Zhong, X., Zhang, H., Zhao, Y., Sun, Q., Hu, Y., Peng, H. and Zhou, D.X. 2013. The rice NAD+-dependent histone deacetylase OsSRT1 targets preferentially to stress-and metabolism-related genes and transposable elements. PLoS One, 8(6): e66807.