تحلیل بیان ژن‌های دفاعی و صفات بیوشمیایی در واکنش به تیمار سطوح سولفات مس در گندم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانشیار، گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 استادیار، گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

آلودگی ناشی از فلزات سنگین یکی از مشکلات اساسی جوامع بشری در تولید محصولات کشاورزی است و به‌عنوان یکی از عوامل اساسی تهدید سلامت بشر به شمار می‌رود. مس نقش بسیار مهمی در فعالیت‌های بیوشیمیایی گیاهان نظیر فتوسنتز، تنفس، انتقال کربوهیدرات‌ها، احیا و تثبیت همزیستی نیتروژن، متابولیسم پروتئین‌ها دارد. پژوهش حاضر به‌منظور بررسی تأثیر تنش فلز سنگین مس بر خصوصیات بیوشیمیایی و الگوی بیان ژن‌های کاتالاز وگلوتاتیون پراکسیدازو متالوتیونین آزمایشی به‌‌صورت فاکتوریل بر پایه طرح کاملا تصادفی در سه تکرار در شرایط گلخانه اجرا شد. فاکتور‌های آزمایشی شامل ژنوتیپ‌‌‌های مروارید و گنبد و لاین امید بخش N9108 و سولفات مس (صفر، 5/1، 5/2 و 5/3 میلی‌گرم در کیلوگرم خاک) بود. نمونه‌برداری‌ها از برگ در حداکثر رشد رویشی (مرحله زادوکس GS45) انجام گرفت. نتایج نشان داد که نمک مس منجر به افزایش بیان برخی از ژن‌ها در ژنوتیپ‌های گندم مورد مطالعه شد. سطح بیان ژن‌ها در برگ نسبت به شاهد در تنش تیمار مس افزایش معنی‌داری نشان داد. به طور کلی لاین امید بخش N9108 تحت تنش فلز مس، واکنش بهتری طی تنش در خصوص بیان ژن و صفات بیوشیمیایی (میزان کلروفیل و اکسیداسیون سلولی)، نسبت به رقم مروارید و گنبد از خود نشان داد. 

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of the expression of defense genes and biochemical traits in response to the treatment of copper sulfate levels in wheat

نویسندگان [English]

  • aida hajileri 1
  • saied navabpour 2
  • ahad yamchi 3
1 MS.C Student, Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Resources, Gorgan, Iran
2 Associate Professor, Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Resources, Gorgan, Iran
3 Assistant Professor, Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Resources, Gorgan, Iran
چکیده [English]

Heavy metal pollution is one of the fundamental problems in human societies concerning agricultural production and is considered a major threat to human health. Copper plays a very important role in the biochemical activities of plants such as photosynthesis, respiration, transport of carbohydrates, regeneration and stabilization of nitrogen coexistence, protein metabolism. In order to investigate the effect of copper heavy metal stress on the biochemical characteristics and the expression pattern of catalase and glutathione peroxidase metallothionein genes, a factorial experiment was conducted based on a completely randomized design in three replications under greenhouse conditions. The experimental factors included pearl and dome genotypes and promising line N9108 and copper sulfate (zero, 1.5, 2.5 and 3.5 mg/kg soil). Sampling of leaves was done at the maximum vegetative growth (Zadox GS45 stage). The results showed that copper salt led to an increase in the expression of some genes in the studied wheat genotypes. The level of expression of genes in the leaf was increased compared to the control in the stress of copper treatment. showed significance. In general, the promising line N9108 under stress of copper metal showed a better response during stress in terms of gene expression and biochemical traits (chlorophyll level and cellular oxidation) compared to Morvarid and Gonbad cultivars.

کلیدواژه‌ها [English]

  • gene expression
  • heavy metal stress
  • copper metal
  • wheat
Asada, K. (2000). The water-water cycle as alternative photon and electron sinks. Philosophical Transactions of the Royal Society B: Biological Sciences, 355, 1419-1431.
Asselman, J., Semmouri, I., Jackson, C.E., Keith, N., Van Nieuwerburgh, F., Deforce, D., Shaw, Joseph, R., & Karel, A.C., De Schamphelaere. (2019). Genome-wide stress responses to copper and arsenic in a field population of daphnia. Environmental Science Technology, 3850–3859.
Foyer, C.H., Lelandais, M., & Kunerk, K.J. (1994). Oxidative stress in plants. Physiology Plant, 92, 696-717.
Gajewska, J., Floryszak-Wieczorek, J., Sobieszczuk-Nowicka, E., Mattoo, A., & Arasimowicz-Jelonek, M. (2022). Fungal and oomycete pathogens and heavy metals: an inglorious couple in the environment. IMA Fungus, 13, 1–20 .
Gardea-Torresdey, J.L., Peralta-Videa, J.R., Montes, M., Rose, G.D., & Corral-Diaz, B. (2004). Bioaccumulation of cadmium, chromium and copper by (Convolvulus arvensis L.): Impact on plant growth and uptake of nutritional elements. Bioresource Technology, 92, 229-235.
Gerami, M., Ghorbani, A., & Karimi, S. (2018). Role of salicylic acid pretreatment in alleviating cadmium-induced toxicity in Salvia officinalis L. Iranian Journal. Plant Biology, 10(1), 81-96
Guo, P., Wang, T., Liu, Y., Xia, Y., Wang, G.P., Shen, Z.G., & Chen, Y.H. (2014). Phytostabilization potential of evening primrose (Oenothera glazioviana) for copper contaminated sites. Environmental Science and Polluthon Reaserch, 21, 631–640.
Kazemi, G., Navabpour, S., & Ramezanpour, S.S. (2010). Evaluation of catalase gene expression and morphological traits in two wheat cultivars under salt stress. Modern Genetic Journal, 1, 79-87. (In Persian).
Hagege, D., Nouvelot, A., Boucaud, J., & Gaspar, T. (1990). Malondialdehyde titration with thiobarbiturate in plant extracts: avoidance of pigment interference. Phytochemical Analysis, 1, 86-89.
Hong, L. (2004). Effects of salt strees on root plasma membrane characteristics of salt tolerance and salt sensitive buffalo grass clons. Environmental and Experimental Botany, 36, 239-245.
Li, F., QI, J., Zhang, G. y., Lin, L.h., Fang, P., Tao, A., & Xu, J. (2010). Effect of cadmium stress on the growth, antioxidative enzymes and lipid peroxidation in two kenaf (Hibiscus cannabinus L.) plant seedlings. Journal of Integrative Agriculture, 12, 610-620.
Li, P., Wang, X., Zhang, T., Zhou, D., & He, Y. (2008). Effect of several amendments on rice growth and uptake of copper and cadmium from a contaminated soil. Journal of Environmental Sciences, 20(4), 449–455.
Li, Z., Hansen, J.L., Liu, Y., Zemetra, R.S., & Berger, P.H. (2004). Using real-time PCR to determine transgene copy number in wheat. Plant Molecular Biology Reporter, 22, 179-188.
Liu, N., Zhong, G., Zhou, J., Liu, Y., Pang, Y., Cai, H., & Wu, Z. (2019). Separate and combined effects of glyphosate and copper on growth and antioxidative enzymes in (Salvinia natans L.). The Science of The Total Environment, 655, 448–456.
Macar, O., Macar, Kalefetoglu, Çavus¸oglu, T., & Yalçın, E, K. (2020). Protective effects of anthocyanin-rich bilberry (Vaccinium myrtillus L.) extract against copper (II) chloride toxicity. Environment Science and Pollution Reaserch, 27, 1428–1435.
Massa, N., Andreucci, F., Poli, M., Aceto, M., Barbato, R & Berta, G. (2010). Screening for heavy metal accumulators amongst autochthonous plants in a polluted site in Italy. Ecotoxicology and Environmental Safety, 73(8), 1988–1997.
Mishra, A., & Choudhuri, M. (1999). Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biologia Plantarum, 42, 409-415.
Mura, A., Pintus, F., Medda, R., Floris, G., Rinaldi, A. C., & Padiglia, A. (2007). Catalase and antiquitin from Euphorbia characias: Two proteins involved in plant defense. Journal of Biochemistry, 72, 501-5.
Najafi, N., Ahmadinezhad, R., Aliasgharzad, N., & Oustan, Sh. (2019). Effects of urea integration with manure and two types of compost (municipal waste and sewage sludge) on concentrations of micronutrients and sodium in wheat leaf, stem and seed. Journal of Water and Soil Conservation, 26(3), 63-81. (In Persian).
Nenghui, Y.Haoxuan, L.Guohui, Z.Yinggao, L.Rui, L. Weifeng, X. Yu, J.Xinxiang, P., & Jianhua, Z. (2014). Copper Suppresses Abscisic Asid catabolism and Catalase Activity, and Inhibits Seed Germination of Rice. Plant and cell Physiology, 55(11), 2008-2016.
Pichhode, M., & Nikhil, K. (2015). Effect of copper mining dust on the soil and vegetation in India: a critical review. International Journal Model Science Engeerenig Technology, 2, 73e76.
Prasad, R., & Power, J. F. (1997). Soil fertility management for sustainabl agriculture. I. ewis, NewYork.
Porra, R.J., Thompson, W.A., & Kriedemann, P.E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA)- Bioenergetics, 975, 384-394.
Roy, S.K., Cho, S.W., Kwon, S.J., Kamal, A.H.M., Lee, D.G., Sarker, K., Lee, M.S., Xin, Z., & Woo, S.H. (2017). Proteome characterization of copper stress responses in the roots of sorghum. Biometals, 30, 765–785.
Sandalio, L. M., Dalurzo, H. C., Gomez, M., Romero-Puertas, M. C., & Del Rio, L. A. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52(364), 2115-2126.
Seregin, I.V., & Kozhevnikova, A.D. (2006). Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53, 257–277.
Shao, H. B., Chu, L. Y., Wu, G., Zhang, J. H., & Hu, Y.C. (2007). Changes of some anti-oxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Colloids and Surfaces B: Biointerfaces, 45, 7-13.
Singh, V.P. (1995). Toxic metal cadmium. In: Trivedy R.K. (ed.), Phytotoxicity and tolerance in plants. Advances in Environmental Science Technology, Ashish Publication House, New Delhi. Pp. 225-256.
Smeets, K., Ruytinx, J., Semane, B., Van Belleghem, F., Remans, T., Van Sanden, S., & Cuypers, A. (2008). Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environmental and Experimental Botany, 63(1), 1-8.
Srivastava, S., Mishra, S., Tripathi, R. D., Dwivedi, S., & Gupta, D.K. (2006). Copper induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (Lf.). Royle Aquatic Toxicology, 80(4), 405–415.
Sun, C., Dudley, S., McGinnis, M., Trumble, J., & Gan, J. (2019). Acetaminophen detoxification in cucumber plants via induction of glutathione S-transferases. Science of The Total Environment649, 431–439.
Zhang, H., Xia, Y., Wang, G., & Shen, Z. (2008). Excess copper induces accumulation of hydrogen peroxide and increases lipid peroxidation and total activity of copper-zinc superoxide dismutase in roots of Elsholtzia haichowensis. Planta, 227, 465–475.
Zhou, Z.S, Huang, S.Q., Gou, K., Mehta, S.K., Zhang, P.C., & Yang, Z.M. (2007). Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. Journal of Inorganic Biochemistry,101, 1-9.