Aghaie, P., Kazemini, S.A., Majd, R., & Alebrahim, M.T. (2013). Role of phosphorus in maize (Zea mays L.) competitiveness against velvetleaf (Abutilon theophrasti). International Journal of Agronomy and Plant Production, 4(9), 2323-2329.
Alebrahim, M.T., Azadbakht, A., & Jafarzadeh gallo, P. (2018). Study on the effect of Russian knapweed (Acroptilon repens L.) aqueous extract on seed germination and growth characteristics of purslane, common yellow mallow and wheat. Iranian Journal of Seed Sciences Research, 5,4.13-24. (In Persian)
Alebrahim, M.T., Fakhari, R., & Sharifi, K. (2015). Allelopathic effect of bitter gourd extract (Acroptilon repens) on the greening of some crops and weeds. Iranian Journal of Seed Research, 6(3), 13-21. (In Persian)
Alebrahim, M.T., Fakhari, R., & Sharifi, K. )2016(. Allelopathic effect of Acroptilon repens extract on emergence of some crops and weeds. Journal of Seed Research, 6, 20. 21-13. (In Persian)
Alebrahim, M.T., Jafarzad, P., Khomari, S., & Azadbakht, A. (2017). The feasibility of the application of Russian knapweed (Acroptilon repens) extract as a biological herbicide for controlling some weeds in wheat and potato crop. Research in Agriculture, 9(2), 40-57. (In Persian)
Alebrahim, M.T., Rashed Mohassel, M.H., Wilcockson, S., Baghestani, M.A., & Ghorbani, R. (2012). Evaluating of Some Preemergence herbicides for lambsquarter and red root pigweed control in potato fields. Journal of plant protection Agricultural Science and Technology, 25, 4.358-367. (In Persian)
Alebrahim, M.T., Rouhi, H., Serajchi, M., Majd, R., & Ghorbani, R. (2011). Study of dormancy-breaking and optimum temperature for germination of Russian knapweed (Acroptilon repens L.). International Journal Agricultural Science, 1,1.19-25.
Alford, E., Perry, L., Qin, B., Vivanco, J., & Paschke, M. (2007). A putative allelopathic agent of Russian knapweed occurs in invaded soils. Soil Biology and Biochemistry, 39,7.1812-1815.
Algandaby, M.M., & El-Darier, S.M. (2016). Management of the noxious weed; Medicago polymorpha L. via allelopathy of some medicinal plants from Taif region, Saudi Arabia. Saudi Journal Biological Sciences, 25, 7.1339-1347.
Awwad, A.M., Salem, N.M., & Abdeen, A.O. (2013). Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. International Journal Industrial Chemistry, 4, 29.1-6.
Bulmera, C., Margaritisa, A., & Xenocostasb, A. (2012). Production and characterization of novel chitosan nanoparticles for controlled release of rHu-Erythropoietin. Biochemical Engineering Journal, 68, 61-69.
Chauhan, B.S., & Johnson, D.E. (2008). Seed germination and seedling emergence of giant sensitive plant (Mimosa invisa). Weed Science, 56, 244-248.
Cheung, R., Ng, T., Wong, J., & Chan, W. (2015). Chitosan: an update on potential biomedical and pharmaceutical application. Marine Drugs, 13, 8. 5156-5186.
De-Arruda I.N.Q., Pereira V.A. & Stefani R. (2017). Application of chitosan matrix for delivery of rutin. Journal of the Iranian Chemical Society, 14, 3. 561-566.
Delafuente, E.B., Suarez, S.A., & Ghersa, C.M. (2006). Soybean weed community composition and richness between 1995 and 2003 in the Rolling Pampas (Argentina). Agriculture Ecosystem and Environment, 115, 1-4. 229-236.
Fateh, E., Sohrabi, S.S., & Gerami, F. (2012). Evaluation of the allelopathic effect of bindweed (Convolvulus arvensis L.) on germination and seedling growth of millet and basil. Advances in Environmental Biology, 6(3), 940-950.
Fitter, A. (2003). Making allelopathy respectable. Science Journal, 301, 5638.1337-1338.
Gao, P., Nie, X., Zou, M., Shi, Y., & Cheng, G. (2011). Recent advances in materials for extended-release antibiotic delivery system. Japanese Journal Antibiotics, 64, 8.625- 634.
Ghadi, A., Mahjoub, S., Tabandeh, F., & Talebnia, F. (2014). Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering. Caspian Journal Internal Medicine, 5, 3.156-161.
Hatami hampa, A., Javanmard A., Alebrahim M.T., & Sofalian O. (2017). Allelopathic effects of Sorghum (Sorghum bicolor l.) and Russian knapweed (Acroptilon repens L.) aqueous extract on seed germination indices and enzyme activity of some field crops and weeds. Journal plant protection, 31,4.676-689.
Hatami Hampa, A., Jawanmard, A., Alebrahim, M.T., & Sofalian, O. (2018). Allelopathic effects of aqueous extracts of Sorghum and Russian knapweed on seedling growth and activity of antioxidant enzymes in wheat, sugar beet, Lamb’s quarters and pigweed. Iranian Plant Protection Researches, 32(1), 101-119. (In Persian)
Hosseini, M., Mojab, M., Samadi Kalkhoran, E., Zamani, Gh.R., & Alebrahim, M.T. (2022). The allelopathic effects of extract and wheat residue rates on prostrate pigweed (Amaranthus bilituides) and common lambsquarters (Chenopodium album). Plant production and Genetic, 3(2), 261-274. (In Persian)
Jabran, k., Mahajan, G., Sardana, V., & Chauhan B.S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection, 72, 2015. 57-65.
Kang, G.Q., Wan, F.H., Liu, X., & Guo, L. (2008). Influence of two allelochemicals from Ageratina adenophora Sprengel on ABA, IAA and ZR contents in roots of upland rice seedlings. Allelopathy Journal, 21, 2. 253-262.
Kohansal, A., Mojab, M., Kohnavard, F., Rustanejad, M.R., Mandust, M., & Rezaei, M. (2009). Allelopathic effects of aqueous extract of aboveground and underground Acroptilon repens on germination and growth of wheat plant. The second regional conference on agricultural science and food industry (Fasa), P. 1-9. (In Persian)
Lambers, H., Chapin, F.S., & pons, T.L. (2008). Biotic influences. Plant physiological Ecology. Berlin Germany, 623pp.
Mubeen, K., Nadeem, M.A., Tanveer, A., & Zahir, Z.A. (2012). Allelopathic effects of sorghum and sunflower water extractson germination and seedling growth of rice (Oryza sativa L.) and three weed species. Journal of Animal Plant Sciences, 22, 3.738-746.
Nabati Souha, L., Alebrahim, M.T. Habibi Yangjeh, A., & Feizpoor, S. (2021). Green synthesis of chitosan Nanoparticles by Extract of Aerial Organs of Russian Knapweed (Acroptilon repens L.). Razi Journal of Medical Sciences, 28(11), 35-47. (In Persian)
Oroji, K., Khazaee, H.R., Rashed Mohassel, M.H., Qorbani, R., &Azizi, M. (2008). Investigating allelopathic effect of sunflower (Helianthus annuus) on red root pigweed (Amaranthus retroflexus) and common white goosefoot (Chenopodium album) seed germination and growth. Plant Conservation Journal, 25, 245-251. (In Persian)
Pantidos, N., & Horsfall, L.E. (2014). Biological Synthesis of Metallic Nanoparticles by Bacteria, Fungi and Plants. Journal of Nanomedicine and Nanotechnology, 5, 5. 1-10.
Perry, D.A. (1991). Methodology and application of vigour tests. International Seed Testing Association, Zurich, Switzerland, 275pp.
Qasem, J.R. 1992. Pigweed (Amaranthus spp) interference in transplanted tomato (Lycopersicom esculentum). Journal of Horticultural Science, 67,3. 421-428.
Safahani, A.R. & Ghooshchi, F. (2014). Allelopathic effects of aqueous and residue of different weeds on germination and seedling growth of wheat. Journal of Plant Research (Iranian Journal Biology), 27, 1,100-109. (In Persian)
Scott, S.J., Jones, R.A., & Williams, W.A. (1984). Review of data analysis methods for seed germination. Crop Science, 24, 1192-1199.
Shahbazi, M.A., Hamidi, M., & Mohammadi Samani, S. (2013). Preparation, optimization, and in-vitro/in-vivo/exvivo characterization of chitosan-heparin nanoparticles: drug-induced gelation. Journal of Pharmacy and pharmacology, 65, 8.1118–1133.
Shang, Z.H., & Xu, S.G. 2012. Allelopathic testing of pedicularis kansuensis (Scrophulariaceae) on seed Sprengel
on ABA, IAA and ZR contents in roots of upland rice seedlings. Allelopathy Journal, 21, 253-262.
Stermitz, F.R., Bais, H.P., Foderaro, T.A., & Vivanco, J.M. (2003). 7, 8-Benzoflavone: A Phytotoxin from root exudates of invasive Russsian Knapweed. Phytochemistry, 64(2), 493-497.
Stribbig, J., Jensarik, J., & Hanscristian, A. (2005). Basisc of Weed Science. Ferdowsi University of Mashhad. Pp536.
Struszezyk, H., Pospieszmy, H., & Kotlinski, S. (1989). Some new applications of chitosan in agriculture, in Chitin and Chitosan. Applied Science. New York. 733-742.
Sturm, D.J., Kunz, C., & Grehards, R. 2016. Inhibitory effects of cover mulch on germination and growth of Stellaria media L. Vill. Chenopodium album L. and Matricaria chamomilla L. Crop Protection, 90, 25- 131.
Thi, H.L., Lan, P.T.P., Chin, D.V., & Noguchi, H. (2008). Allelopathic potential of cucumber (Cucumis sativus) on barnyardgrass (Echinochloa crus-galli). Weed Biology and Management, 8, 2.129-132.
Vyvyan, J.R. (2002). Allelochemicals as leads for new herbicide and Agrochemicals. Tetrahedron. 58(52),1631- 1646.
Winkler, A.J., Dominguez-Nuñez, J.A., Aranaz, I., Poza- Carrión, C., Ramonell, K., & Somerville, S. (2017). Short-chain chitin oligomers: Promoters of plant growth. Marine Drugs.15, 2. 40. 1-21.
Yan ni, G., Schaffner, U., Peng, S.C., & Callaway, R.M. (2010). Acroptilon repens, an Asian invader, has stronger competitive effect on species from America than species from site native range. Biology invasions, 10, 913-914.
Yarnia, M., Farajzadeh Memari Tabrizi, E., Ahmadzadeh, V., & Nobari, N. (2010). Allelopathic Effects of Field Binweed (Convolvulus arvensis L.) Extract and Residuals on Wheat (Triticum aestivum L.). Journal of Agricultural Science and Sustainable Production, 20, 1.153-167. (In Persian)