بررسی تأثیر عصاره ی خالص و نانوکپسوله شده علف هرز تلخه (Acroptilon repens L.) با کیتوزان بر جوانه زنی علف هرز تاج خروس ریشه قرمز (Amaranthus retroflexus)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانش آموخته کارشناسی ارشد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 دانش آموخته دکتری، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

4 دانشیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

به منظور بررسی تأثیر عصاره خالص و فرموله شده تلخه با کیتوزان بر جوانه‌زنی علف‌‌هرز تاج‌خروس (Amaranthus retroflexus) آزمایشی در سال 1396 در قالب فاکتوریل بر پایه طرح کاملاً تصادفی با سه تکرار اجرا شد. تیمارهای آزمایشی شامل فاکتور اول عصاره خالص و فرموله شده تلخه (Acroptilon repense L.) با کیتوزان و فاکتور دوم شامل هفت غلظت (صفر (شاهد)، 625/0، 25/1، 5/2، 5، 10 و20 درصد (گرم پودر خشک گیاهی در یک لیتر آب مقطر)) بود. نتایج نشان داد که اثرات متقابل نوع عصاره و غلظت‌های مختلف در عصاره فرموله شده با کیتوزان بیشترین بازدارندگی را بر جوانه‎زنی علف‌هرز تاج خروس داشت. همچنین بیشترین طول ساقه‏چه، طول ریشه‏چه، وزن تر ساقه‌چه و ریشه‌چه از تیمار 625/0 درصد عصاره خالص و کمترین آن از تیمارهای 5، 10 و 20 درصد عصاره فرموله شده تلخه با کیتوزان حاصل شد. بیشترین بازدارندگی وزن خشک ساقه‎چه و ریشه‎چه از غلظت‌های 5، 10 و 20 درصد عصاره خالص و فرموله شده تلخه با کیتوزان (کنترل 100 درصدی نسبت به شاهد) و کمترین بازدارندگی از غلظت 625/0 درصد از عصاره فرموله شده تلخه با کیتوزان حاصل شد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the effect of pure and nonencapsulated extract of Russian knapweed (Acroptilon repens L.) with chitosan on the germination of redroot pigweed (Amaranthus retroflexus)

نویسندگان [English]

  • Mohammad Taghi Alebrahim 1
  • Amir Hajzadeh 2
  • Fatemeh Ahmadnia 3
  • Salim Farzaneh 4
1 Professor, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
2 MSc. graduate Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
3 Ph.D. graduate, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
4 Associate Professor. Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

In order to investigate the effect of pure Russian knapweed extract formulated with chitosan on the germination of pigweed (Amaranthus retroflexus), an experiment was conducted in 2016 in a factorial format based on a completely randomized design with three replications. The experimental treatments included the first factor of pure extract Russian knapweed and its formulated extract with chitosan and the second factor had seven concentrations (zero (Distilled water), 0.625, 1.25, 2.5, 5, 10, and 20% ). The results showed that the interaction effects of the type of extract and different concentrations in the extract formulated with chitosan had the highest inhibition on the germination of the pigweed. Also, the highest plumule length, radicle length, and plumule fresh weight and radicle fresh weight were obtained from the treatment of 0.625% of pure extract and the lowest from the treatments of 5, 10, and 20% of formulated Russian knapweed extract with chitosan. The highest inhibition of plumule and radicle dry weight from concentrations of 5, 10, and 20% pure and formulated extract of Russian knapweed with chitosan (100% control compared to the distilled water), and the lowest inhibition was obtained from the concentration of 0.625% of the formulated extract with chitosan.

کلیدواژه‌ها [English]

  • Allopathy
  • Biological herbicide
  • Chitosan
  • Non-chemical control
  • Weed management
Aghaie, P., Kazemini, S.A., Majd, R., & Alebrahim, M.T. (2013). Role of phosphorus in maize (Zea mays L.) competitiveness against velvetleaf (Abutilon theophrasti). International Journal of Agronomy and Plant Production, 4(9), 2323-2329.
Alebrahim, M.T., Azadbakht, A., & Jafarzadeh gallo, P. (2018). Study on the effect of Russian knapweed (Acroptilon repens L.) aqueous extract on seed germination and growth characteristics of purslane, common yellow mallow and wheat. Iranian Journal of Seed Sciences Research, 5,4.13-24. (In Persian)
Alebrahim, M.T., Fakhari, R., & Sharifi, K. (2015). Allelopathic effect of bitter gourd extract (Acroptilon repens) on the greening of some crops and weeds. Iranian Journal of Seed Research, 6(3), 13-21. (In Persian)
Alebrahim, M.T., Fakhari, R., & Sharifi, K. )2016(. Allelopathic effect of Acroptilon repens extract on emergence of some crops and weeds. Journal of Seed Research, 6, 20. 21-13. (In Persian)
Alebrahim, M.T., Jafarzad, P., Khomari, S., & Azadbakht, A. (2017). The feasibility of the application of Russian knapweed (Acroptilon repens) extract as a biological herbicide for controlling some weeds in wheat and potato crop. Research in Agriculture, 9(2), 40-57. (In Persian)
Alebrahim, M.T., Rashed Mohassel, M.H., Wilcockson, S., Baghestani, M.A., & Ghorbani, R. (2012). Evaluating of Some Preemergence herbicides for lambsquarter and red root pigweed control in potato fields. Journal of plant protection Agricultural Science and Technology, 25, 4.358-367. (In Persian)
Alebrahim, M.T., Rouhi, H., Serajchi, M., Majd, R., & Ghorbani, R. (2011). Study of dormancy-breaking and optimum temperature for germination of Russian knapweed (Acroptilon repens L.). International Journal Agricultural Science, 1,1.19-25.
Alford, E., Perry, L., Qin, B., Vivanco, J., & Paschke, M. (2007). A putative allelopathic agent of Russian knapweed occurs in invaded soils. Soil Biology and Biochemistry, 39,7.1812-1815.
Algandaby, M.M., & El-Darier, S.M. (2016). Management of the noxious weed; Medicago polymorpha L. via allelopathy of some medicinal plants from Taif region, Saudi Arabia. Saudi Journal Biological Sciences, 25, 7.1339-1347.
Awwad, A.M., Salem, N.M., & Abdeen, A.O. (2013). Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. International Journal Industrial Chemistry, 4, 29.1-6.
Bulmera, C., Margaritisa, A., & Xenocostasb, A. (2012). Production and characterization of novel chitosan nanoparticles for controlled release of rHu-Erythropoietin. Biochemical Engineering Journal, 68, 61-69.
Chauhan, B.S., & Johnson, D.E. (2008). Seed germination and seedling emergence of giant sensitive plant (Mimosa invisa). Weed Science, 56, 244-248.
Cheung, R., Ng, T., Wong, J., & Chan, W. (2015). Chitosan: an update on potential biomedical and pharmaceutical application. Marine Drugs, 13, 8. 5156-5186.
De-Arruda I.N.Q., Pereira V.A. & Stefani R. (2017). Application of chitosan matrix for delivery of rutin. Journal of the Iranian Chemical Society, 14, 3. 561-566.
Delafuente, E.B., Suarez, S.A., & Ghersa, C.M. (2006). Soybean weed community composition and richness between 1995 and 2003 in the Rolling Pampas (Argentina). Agriculture Ecosystem and Environment, 115, 1-4. 229-236.
Fateh, E., Sohrabi, S.S., & Gerami, F. (2012). Evaluation of the allelopathic effect of bindweed (Convolvulus arvensis L.) on germination and seedling growth of millet and basil. Advances in Environmental Biology, 6(3), 940-950.
Fitter, A. (2003). Making allelopathy respectable. Science Journal, 301, 5638.1337-1338.
Gao, P., Nie, X., Zou, M., Shi, Y., & Cheng, G. (2011). Recent advances in materials for extended-release antibiotic delivery system. Japanese Journal Antibiotics, 64, 8.625- 634.
Ghadi, A., Mahjoub, S., Tabandeh, F., & Talebnia, F. (2014). Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering. Caspian Journal Internal Medicine, 5, 3.156-161.
Hatami hampa, A., Javanmard A., Alebrahim M.T., & Sofalian O. (2017). Allelopathic effects of Sorghum (Sorghum bicolor l.) and Russian knapweed (Acroptilon repens L.) aqueous extract on seed germination indices and enzyme activity of some field crops and weeds. Journal plant protection, 31,4.676-689.
Hatami Hampa, A., Jawanmard, A., Alebrahim, M.T., & Sofalian, O. (2018). Allelopathic effects of aqueous extracts of Sorghum and Russian knapweed on seedling growth and activity of antioxidant enzymes in wheat, sugar beet, Lamb’s quarters and pigweed. Iranian Plant Protection Researches, 32(1), 101-119. (In Persian)
Hosseini, M., Mojab, M., Samadi Kalkhoran, E., Zamani, Gh.R., & Alebrahim, M.T. (2022). The allelopathic effects of extract and wheat residue rates on prostrate pigweed (Amaranthus bilituides) and common lambsquarters (Chenopodium album). Plant production and Genetic, 3(2), 261-274. (In Persian)
Jabran, k., Mahajan, G., Sardana, V., & Chauhan B.S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection, 72, 2015. 57-65.
Kang, G.Q., Wan, F.H., Liu, X., & Guo, L. (2008). Influence of two allelochemicals from Ageratina adenophora Sprengel on ABA, IAA and ZR contents in roots of upland rice seedlings. Allelopathy Journal, 21, 2. 253-262.
Kohansal, A., Mojab, M., Kohnavard, F., Rustanejad, M.R., Mandust, M., & Rezaei, M. (2009). Allelopathic effects of aqueous extract of aboveground and underground Acroptilon repens on germination and growth of wheat plant. The second regional conference on agricultural science and food industry (Fasa), P. 1-9. (In Persian)
Lambers, H., Chapin, F.S., & pons, T.L. (2008). Biotic influences. Plant physiological Ecology. Berlin Germany, 623pp.
Mubeen, K., Nadeem, M.A., Tanveer, A., & Zahir, Z.A. (2012). Allelopathic effects of sorghum and sunflower water extractson germination and seedling growth of rice (Oryza sativa L.) and three weed species. Journal of Animal Plant Sciences, 22, 3.738-746.
Nabati Souha, L., Alebrahim, M.T. Habibi Yangjeh, A., & Feizpoor, S. (2021). Green synthesis of chitosan Nanoparticles by Extract of Aerial Organs of Russian Knapweed (Acroptilon repens L.). Razi Journal of Medical Sciences, 28(11), 35-47. (In Persian)
Oroji, K., Khazaee, H.R., Rashed Mohassel, M.H., Qorbani, R., &Azizi, M. (2008). Investigating allelopathic effect of sunflower (Helianthus annuus) on red root pigweed (Amaranthus retroflexus) and common white goosefoot (Chenopodium album) seed germination and growth. Plant Conservation Journal, 25, 245-251. (In Persian)
Pantidos, N., & Horsfall, L.E. (2014). Biological Synthesis of Metallic Nanoparticles by Bacteria, Fungi and Plants. Journal of Nanomedicine and Nanotechnology, 5, 5. 1-10.
Perry, D.A. (1991). Methodology and application of vigour tests. International Seed Testing Association, Zurich, Switzerland, 275pp.
Qasem, J.R. 1992. Pigweed (Amaranthus spp) interference in transplanted tomato (Lycopersicom esculentum). Journal of Horticultural Science, 67,3. 421-428.
Safahani, A.R. & Ghooshchi, F. (2014). Allelopathic effects of aqueous and residue of different weeds on germination and seedling growth of wheat. Journal of Plant Research (Iranian Journal Biology), 27, 1,100-109. (In Persian)
Scott, S.J., Jones, R.A., & Williams, W.A. (1984). Review of data analysis methods for seed germination. Crop Science, 24, 1192-1199.
Shahbazi, M.A., Hamidi, M., & Mohammadi Samani, S. (2013). Preparation, optimization, and in-vitro/in-vivo/exvivo characterization of chitosan-heparin nanoparticles: drug-induced gelation. Journal of Pharmacy and pharmacology, 65, 8.1118–1133.
Shang, Z.H., & Xu, S.G. 2012. Allelopathic testing of pedicularis kansuensis (Scrophulariaceae) on seed Sprengel
on ABA, IAA and ZR contents in roots of upland rice seedlings. Allelopathy Journal, 21, 253-262.
Stermitz, F.R., Bais, H.P., Foderaro, T.A., & Vivanco, J.M. (2003). 7, 8-Benzoflavone: A Phytotoxin from root exudates of invasive Russsian Knapweed. Phytochemistry, 64(2), 493-497.
Stribbig, J., Jensarik, J., & Hanscristian, A. (2005). Basisc of Weed Science. Ferdowsi University of Mashhad. Pp536.
Struszezyk, H., Pospieszmy, H., & Kotlinski, S. (1989). Some new applications of chitosan in agriculture, in Chitin and Chitosan. Applied Science. New York. 733-742.
Sturm, D.J., Kunz, C., & Grehards, R. 2016. Inhibitory effects of cover mulch on germination and growth of Stellaria media L. Vill. Chenopodium album L. and Matricaria chamomilla L. Crop Protection, 90, 25- 131.
Thi, H.L., Lan, P.T.P., Chin, D.V., & Noguchi, H. (2008). Allelopathic potential of cucumber (Cucumis sativus) on barnyardgrass (Echinochloa crus-galli). Weed Biology and Management, 8, 2.129-132.
Vyvyan, J.R. (2002). Allelochemicals as leads for new herbicide and Agrochemicals. Tetrahedron. 58(52),1631- 1646.
Winkler, A.J., Dominguez-Nuñez, J.A., Aranaz, I., Poza- Carrión, C., Ramonell, K., & Somerville, S. (2017). Short-chain chitin oligomers: Promoters of plant growth. Marine Drugs.15, 2. 40. 1-21.
Yan ni, G., Schaffner, U., Peng, S.C., & Callaway, R.M. (2010). Acroptilon repens, an Asian invader, has stronger competitive effect on species from America than species from site native range. Biology invasions, 10, 913-914.
Yarnia, M., Farajzadeh Memari Tabrizi, E., Ahmadzadeh, V., & Nobari, N. (2010). Allelopathic Effects of Field Binweed (Convolvulus arvensis L.) Extract and Residuals on Wheat (Triticum aestivum L.). Journal of Agricultural Science and Sustainable Production, 20, 1.153-167. (In Persian)