تغییرات الگوی بیان برخی ژ‌ن‌ها در پاسخ به آلودگی سپتوریا در گندم نان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه علوم کشاورزی ومنابع طبیعی گرگان، گرگان، ایران

2 دانشجوی دکتری، گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 دانش آموخته کارشناسی ارشد، گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

یکی از مهمترین بیماری‌هایی که باعث ایجاد خسارت در گندم می‌شود بیماری سپتوریای برگی گندم است. این بیماری چالشی جدی و مداوم، برای تولید گندم در مناطق معتدل در سراسر جهان به‌شمار می‌رود. اساسی‌ترین استراتژی برای کنترل این بیماری، یافتن منابع مقاوم و توسعه کشت ارقام مقاوم است. مطالعات انجام شده در سال‌های اخیر به بررسی نقش و میزان بیان برخی ژن‌های دخیل در فرایند مقاومت به بیماری پرداخته است و روشنگر نقاط ضعف و قوت گیاه و بیمارگر در مسیر بیماری است. در تحقیق حاضر، به منظور تکمیل این تحقیقات و در تایید بیان افتراقی برخی از ژن‌های جداسازی شده، الگوی بیان ژن‌های استولاکتات سنتاز، کالنکسین و GDP- مانوز 3 و 5 اپیمراز با روش واکنش زنجیره‌ای پلیمراز کمی در زمان واقعی مورد ارزیابی قرار گرفتند. پس از آلوده‌سازی لاین مقاوم (شماره 10) و رقم حساس گندم (تجن) با قارچ عامل بیماری، بیان ژن‌های مورد نظر در فواصل زمانی قبل از مایه زنی به عنوان کنترل، شش و 12ساعت، یک، دو، سه، چهار، پنج و هفت روز پس از مایه‌‌زنی مورد ارزیابی قرار گرفت. نتایج به دست آمده ضمن تایید نتایج حاصل از cDNA-AFLP، نشان داد که هر سه ژن نقش مهمی در القا واکنش مقاومت به بیماری سپتوریا از طریق تولید اسید آسکوربیک به عنوان یک آنتی اکسیدان در حذف ROSها، حفظ هموستاری اسیدهای آمینه و کنترل تاخوردگی صحیح پروتئین ها برعهده دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Expression profile changes of some genes in response to Septoria infection in bread wheat

نویسندگان [English]

  • S. Sanaz Ramezanpour 1
  • Hassan Soltanloo 1
  • Sahar Sadat Hosseini 2
  • Lali Gholizadeh 3
1 Associate Professor, Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Ph.D. Student,, Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 MSc. graduate. , Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

Wheat is one of the most important crops, accounting for about 16% of arable land. One of the most important diseases that cause damage to wheat is Septoria tritici. The disease is a serious and ongoing challenge to wheat production in temperate regions around the world. The most basic strategy to control this disease is to find resistant genotypes and develop cultivation of them. In recent years, studies have evaluated the role and expression of some genes involved in the disease resistance process and have clarified the strengths and weaknesses of the plant and the pathogen in the path of the disease. In the present study, to confirm the differential expression of some isolated genes (from the cDNA-AFLP project), the expression pattern of Acetolactate synthase, calnexin, and GDP-mannose 3 and 5 epimerase genes were evaluated by quantitative real-time polymerase chain reaction. After infection of a resistant line (No. 10) and a susceptible wheat cultivar (Tajan) with the fungus, expression of the studied genes was measured at 9-time points (before inoculation as control, six and 12 hours, one, two, three, four, five and seven days after inoculation). The results, while confirming the results of cDNA-AFLP, showed that all three genes play an important role in inducing the resistance reaction to Septoria disease through the production of ascorbic acid as an antioxidant in removing ROS, maintaining amino acid homeostasis and controlling correct folding of proteins are responsible.

کلیدواژه‌ها [English]

  • Gene expression
  • Acetolactate synthetase (ALS)
  • GDP-mannose 3
  • 5 epimerase
  • Calnexin
Adhikari, T.B., Balaji, B. and Breeden, J.D., & Goodwin, S.B. (2007). Resistance to wheat Mycosphaerella graminicola involves early and late peaks of gene expression. Physiological and Molecular Plant Pathology, 70: 55-68.
Akram, N.A., Shafiq, F. & Ashraf, M. (2017). Ascorbic Acid-A Potential Oxidant Scavenger and Its Role in Plant Development and Abiotic Stress Tolerance. Front. Plant Science, 8: 613.
Arjmand, E. (2011). Identification, isolation and characterization of differentially expressed genes in response to septoria blotch disease. Ms.c Thesis, Gorgan University of Agricutura Sciences and Natural Resources, 126p. (In Persian)
Bari, R. & Jones, J.D.G. 2009. Role of plant hormones in plant defence responses. Plant Molecular Biology, 69 (4): 473-488.
Beerens, K., Gevaert, O., & Desmet, T. (2022). GDP-Mannose 3,5-Epimerase: A View on Structure, Mechanism, and Industrial Potential. Frontiers in molecular biosciences, 8: 784142.
Boston, R.S., Viitanen, P.V. and Vierling, E. 1996. Molecular chaperones and protein folding in plants. Plant Molecular Biology, 32 (1-2): 191-222.‏
Campo, S., Manrique, S., García-Martínez, J. & San Segundo, B. (2008). Production of cecropin A in transgenic rice plants has an impact on host gene expression. Plant Biotechnology Journal, 6(6): 585-608.
Dadrezaei, A.S., Minasian, V., Torabi, M. & Lotf Ali Ayeneh, Gh.A. (2003). Effect of Septoria tritici infections at different growth staged on yoeld and yield components of three wheat cultivars. Seed and Plant Journal, 19 (1): 101-116. (In Persian)
Dailey, F.E. & Cronan, J.E. (1986). Acetohydroxy acid synthase I, a required enzyme for isoleucine and valine biosynthesis in Escherichia coli K-12 during growth on acetate as the sole carbon source. Journal of Bacteriology, 165: 453-460.
Debona, D., Rodriques, F.A., Rios, J.A. & Nascimento, K.J. (2012). Biochemical changes in the leaves of wheat plants infected by Pyricularia oryzae. Phytopathology, 102(12): 1121-1129.
Dezfulian, M.H., Foreman, C., Jalili, E., Pal, M., Dhaliwal, R.K., Karl, D., Roberto, A., Imre, K.M., Kohalmi, S.E. & Crosby, W.L. (2017). Acetolactate synthase regulatory subunits play divergent and overlapping roles in branched-chain amino acid synthesis and Arabidopsis development. BMC Plant Biology, 17(1):1-13.
Duggleby, R.G., McCourt, J.A. & Guddat, L.W. (2008). Structure and mechanism of inhibition of plant acetohydroxyacid synthase.Plant Physiology and Biochemistry, 46: 309-324.
Eyal, Z., Scharen, A.L., Prescott, J.M. &Ginkel, M.V. (1987). The Septoria Diseases of Wheat: concepts and methods of disease management. CIMMYT, Mexico D.F. CIMMYT. 54p
Gao, D., Huibers, R.P., Loonen, A.E., Visser, R.G., Wolters, A.M. & Bai, Y. (2014). Down-regulation of acetolactate synthase compromises Ol-1- mediated resistance to powdery mildew in tomato. BMC Plant Biology, 14:32-43.
Garg, G., Yadav, S. & Ruchi Yadav, G. (2015). Key roles of calreticulin and calnexin proteins in plant perception
Ha, H-J., Subburaj, S., Kim, Y-S., Kim, J-B., Kang, S-Y. & Lee, G-J. (2020). Molecular characterization and identification of Calnexin 1 as a radiation biomarker from tradescantia BNL4430. Plants, 9(3):387.
Heath, M.C. (2000). Hypersensitive response-related death. Plant Molecular Biology, 44: 321-334.
Huang, L., Franklin, A. E., and Hoffman, N. E. (1993). Primary structure and characterization of an Arabidopsis thaliana calnexin-like protein. Journal of Biological Chemistry, 268(9), 6560-6566.‏
Jones, J.D.G. & Dangl, J.L. (2006). The plant immune system. Nature, 444 (7117): 323.
Kohlhaw, G.B. 2003. Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiology and Molecular Biology Reviews, 67: 1-15.
Major, L.L., Wolucka, B.A. & Naismith, J, H. (2005). Structure and function of GDP-mannose-3,5-epimerase; an enzyme which performs three chemical reactions at the same active site. Journal of the American Chemical Society, 127(51): 18309–18320.
Martínez, I.M. & Chrispeels, M.J. (2003). Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell, 15: 561–576.
Mccourt, J.A. and Duggleby, R.G. (2006). Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids, 31: 173-210.
Parlati, F., Dominguez, M., Bergeron, J.J. & Thomas, D.Y. (1995). Saccharomyces cerevisiaeCNE1 encodes an endoplasmic reticulum (ER) membrane protein with sequence similarity to calnexin and calreticulin and functions as a constituent of the ER quality control apparatus. Journal of Biological Chemistry, 270: 244–253.
Pfaffl, M.W., Horgan, G.W. & Demptle, L. (2002). Relative expression software tool (REST©) For group-wide comparison and statistical analysis of relative expression result in real-time PCR. Nucleic Acid Research, 29: 2002-2007.
Rainbolt, C.R., Thill, D.C., Zemetra, R.S. & Shaner, D.L. (2005). Imidazolinone-Resistant Wheat Acetolactate Synthase In Vivo Response to Imazamox. Weed Technology, 19:539–548.
Sarwat, M. & Naqvi, A.R. (2013). Heterologous expression of rice calnexin (OsCNX) confers drought tolerance in Nicotiana tabacum. Molecular Biology Reports, 40: 5451–5464
Schwessinger, B. & Zipfel, C. (2008). News from the frontline: recent insights into PAMP-triggered immunity in plants. Current Opinion in Plant Biology, 11 (4): 389.
Shalata, A. & Neumann, P.M. (2001). Exogenous ascorbic acid (vitamin C) increase to salt stress and reduces lipid peroxidation. Expermintal Botany, 52: 2207-2211.
Shetty, N.P., Jensen, J.D., Knudsen, A., Finnie, C., Geshi, N., Blennow, A., Colling, D.B. & Jørgensen, H.J.L. (2009). Effect of β-1,3-glucan from Septoria tritici on structural defence responces in wheat. Journal ofExperimental Botany, 15: 4287-4300.
Shetty, N.P., Kristensen, B.K., Newman, M.A., Møller, K., Gregersen, P.L. & Jørgensen, H.J.L. (2003). Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat. Physiological and Molecular Plant Pathology, 62: 333-346.
Smirnoff, N., & Wheeler, G.L. (2000). Ascorbic acid in plants: biosynthesis and function. Critical Reviews in Plant Sciences, 19(4): 267-290.‏
Sønderby, I.E., Geu-Flores, F., & Halkier, B. A. (2010). Biosynthesis of glucosinolates–gene discovery and beyond. Trends in Plant Science, 15(5): 283-290.‏
Stotz, H., Waller, F&Wang, K. (2013). Innate immunity in plants: the role of antimicrobial peptides. pp. 29–51. In: Hiemstra, P.S., Zaat S.A.J. (Eds.). Antimicrobial Peptides and Innate Immunity. Springer Nature 374p.
under stress conditions: A review. Advances in life Sciences, 5(1): 18-26
Van Loon, L.C. & Van Strien, E.A. (1999). The families of pathogenesis-related proteins, their activities and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 55: 85-97.
Wei, C., Qin, T., Li, Y., Wang, W., Dong, T. &Wang, Q. (2020). Host-induced gene silencing of the acetolactate synthases VdILV2 and VdILV6 confers resistance to Verticillium wilt in cotton (Gossypium hirsutum L.). Biochemical and Biophysical Research Communications, https://doi.org/10.1016/j.bbrc.2020.01.126
Zeier, J. (2013). New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant, Cell and Environment, 36(12): 2085-2103.‏